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Physics-guided multiple regression analysis for
calculating electrostatic free energies of proteins in

different reference states

Tania Hazra and Shan Zhao
∗

An implicit solvent modeling problem is studied in this work, i.e.,

by calculating the electrostatic free energy between water and a

new reference state, how to recover the original solvation free en-

ergy between water and vacuum states. Such a recovery is con-

sidered for the super-Gaussian Poisson-Boltzmann (PB) model [T.

Hazra, S. Ahmed-Ullah, S. Wang, E. Alexov, and S. Zhao, Journal

of Mathematical Biology, (2019) 79:631–672], which is a heteroge-

neous dielectric model to mimic the conformational changes of a

macromolecule. Nevertheless, while the dielectric function should

physically decrease in the vacuum state as it leaves the macro-

molecular region, the super-Gaussian dielectric function has an in-

flation over the narrow band of the solute-solvent boundary. To

avoid such a non-monotonicity issue, a new reference state with

a large enough dielectric value is employed in the super-Gaussian

PB model. Based on the electrostatic free energy calculated using

this new reference state, a multiple regression model is developed

in this paper to estimate the original free energy. The proposed

regression model is built physically by accounting for the contri-

bution of each individual atom explicitly, which is modeled via the

analytical result of the Kirkwood sphere. Moreover, a regression

analysis is conducted for four simple physical descriptors that are

related to electrostatic interactions between solute and solvent, i.e.,

the total number of atoms, the total charge, and the area and vol-

ume of the solvent excluded surface (SES). By using a data set of

74 proteins, the dependence of these four descriptors is analyzed.

Numerical results indicate that the multiple regression model per-

forms well in estimating the electrostatic free energies.
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1. Introduction

The electrostatic analysis is indispensable for studying various important

biological processes at the atomistic level, which involve charged objects

such as proteins, DNAs and RNAs, immersed in an aquatic environment with

mobile ions. As an implicit solvent model, the Poisson Boltzmann Equation

(PBE) [15, 2, 3] has been widely used to simulate electrostatic interactions

between the solute macromolecular and the surrounding solvent molecules.

One common application of the PBE is to calculate the electrostatic free

energy or polar solvation energy, which is defined as the polar energy released

when a solute is dissolved in a solvent. Traditionally, the polar solvation

energy is calculated as the difference in the electrostatic energy between two

reference states, i.e., the water state and vacuum state.

This paper is concerned with an interesting modeling problem, i.e., simu-

lating the electrostatic free energy by choosing the base reference state to be

different from the vacuum. Such a problem has been mentioned in a review

article [3]. The only known study in the literature is presented in Ref. [24], in

which the dependence of polar solvation energy on dielectric constants of two

reference states is represented via an empirical formula. Motivated by [24],

a multiple regression will be conducted in this paper when the underlying

PBE model becomes more complicated than that in [24].

In the classical Poisson-Boltzmann (PB) model [15, 2, 3], the PBE as-

sumes a two-dielectric setting, i.e., a lower dielectric constant εm is assigned

to the molecular region, and a higher dielectric constant εs is used for the wa-

ter subdomain. The solute-solvent boundary, in this case, is a sharp interface

with a dielectric jump, and its shape is commonly modeled as a molecular

surface of the macromolecule. The fitting formula proposed in [24] is for the

two-dielectric PBE, and is able to approximate the electrostatic free energy

for different combinations of (εm, εs) from the PBE calculation on a single

set of (εm, εs) values.

Many improved PB models have been developed in the literature, includ-

ing diffuse interface PB models [1, 4, 5, 8, 30, 9, 28] and the heterogeneous

dielectric PB models [16, 17, 6, 13, 19]. These models all feature a smooth

solute-solvent boundary, i.e., the dielectric function changes smoothly from

the protein to the water region over a narrow transition band. See Fig. 1 (a)

for an illustration. The modeling consideration here takes into account the

physical definition of dielectric coefficient and the atomistic nature of the

solute-solvent system. Physically, the dielectric coefficient of water molecules

or dipoles is determined by the polarizability of the dipole in responding to
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Figure 1: (a) A transition layer is assumed to define a smooth solute-solvent
boundary. (b) Gaussian dielectric distributions in water and vacuum states.
(c) Super-Gaussian dielectric distributions in water and vacuum states.

the electrostatic field. Such a polarizability will increases from the macro-
molecule interior to the water region, but should not undergo a sharp jump
[7]. This is the main reason for adopting a smooth solute-solvent boundary
in diffuse interface PB models [1, 4, 5, 8, 30, 9, 28], in which the water and
protein regions are still treated as homogeneous dielectric media.

Besides the diffuse interface PB models, heterogeneous dielectric mod-
els, such as Gaussian PB model [16, 17] and super-Gaussian PB model [13],
have been developed to construct inhomogeneous dielectric distributions to
mimic the effect of the conformational changes of the macromolecule on the
solvation free energy. These improved PB models perform better than the
traditional two dielectric PB model in solvation free energy calculation for
small molecules [16, 17]. Moreover, the Gaussian dielectric PB model pro-
vides a better prediction of the pKa’s of ionizable groups against thousand
experimentally measured pKa’s in various proteins [26, 27]. An attractive
feature of Gaussian and super-Gaussian PB models is that ensemble aver-
age electrostatic free energy could be captured by using a single structure
[6, 19]. This is much more efficient than the usual ensemble calculation that
involves thousands of steps of PBE computation, together with molecular
dynamics or Monte Carlo simulations.

The Gaussian PB model [16, 17] and super-Gaussian PB model [13] share
some similarity, but define the smooth solute-solvent boundary in different
styles. In particular, when considering a protein immersed in the water or
the so-called water state, the same type of density function g(�r) is defined
in both models to describe an atom-specific heterogeneity throughout the
domain. The Gaussian dielectric function εG(�r) [16, 17] is simply defined as
a linear combination of g(�r) and 1−g(�r), with combination coefficients being
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εm and εs. In the super-Gaussian model [13], a level set or surface function
S(�r) is introduced to represent three regions: molecular subdomain, solute-
solvent boundary, and water subdomain, see Fig. 1 (a). The super-Gaussian
dielectric function εsG(�r) is constructed through two linear combinations
and its maximal value inside the protein is an adjustable parameter εmax.
Illustrations of the dielectric functions of two models are shown in Fig. 1. It
is seen that they are close to each other in the water state.

For the vacuum state, the dielectric functions of Gaussian PB model
[16, 17] and super-Gaussian PB model [13] are significantly different, see
Fig. 1. In the Gaussian PB model [16, 17], the dielectric function in the
vacuum state is generated by truncating that function in the water state.
To this end, a surface cut boundary is first identified, say at ε = 20. In
the first version [16, 17], εG(�r) is kept to be the same inside the surface
cut boundary, while for outside εG(�r) = εs = 1. Consequently, εG(�r) is
discontinuous at the surface cut boundary. An improved version has been
developed in [6], in which an exponentially decaying function is adopted
outside the surface cut boundary, so that εG(�r) is C0 continuous, but not
C1 continuous, see Fig. 1 (b). From mathematical point of view, the low
regularity of εG(�r) will introduce additional difficulties in numerical solution
and analysis of the partial differential equation (PDE). On the contrary, the
dielectric function of the super-Gaussian model is at least C2 continuous in
both water and vacuum states [13]. This is achieved by defining both states
via one dielectric model and the switching of two states is realized through
one parameter.

We will focus only on the super-Gaussian PB model in this work. For
the vacuum state, it can be seen from Fig. 1 (c) that εsG(�r) has an inflation
or a concavity change across the solute-solvent boundary. The height of this
inflation is controlled by the value assigned to εmax [13]. In some sense, such
an inflation contradicts our physical intuition, i.e., the dielectric function in
the vacuum state should decay monotonically outside the protein. We will
not attempt to modify the super-Gaussian PB model in this study. Instead,
we will consider a different modeling problem: compute the electrostatic free
energy by choosing the base reference state to be different from the vacuum
state. In particular, we can carefully choose the dielectric constant of the
new reference state so that εsG(�r) is monotonic outside the protein.

For the super-Gaussian PB model, the planned study allows us to bypass
the non-monotonicity issue. We note that our modeling problem has a more
general physical meaning: by solving solvation free energy between water
state and a new reference state, how to recover the energy between water
and vacuum states. To support this physical perspective, some reference
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media which have low dielectric constants such as benzene, cyclohexane,

trichloroethylene, etc. can be considered. In this paper, we propose a multiple
regression model to retrieve the solvation free energy which was lost due to

the dielectric inflation across the solute-solvent boundary and validate it for
the super-Gaussian model. We note that the proposed multiple regression

model can be applied to two-dielectric and Gaussian PB models to study
the same type of problems.

The rest of the paper is structured with the following sections. Section 2

revisits the super-Gaussian model and the solvation free energy calculation.
The time and space discretization techniques are included in that section.

A physics-guided regression analysis will be conducted in Section 3 for re-
trieving the original solvation free energy, based on the energy calculations

with different reference states. The proposed multiple regression model will

be validated in Section 4 and Section 5. Finally, the paper is ended with a
brief discussion. Two appendices will be presented. In the first one, a rigor-

ous derivation of the electrostatic free energy formula for a Kirkwood sphere
with a two-dielectric setting is offered. This study involves many different

notations for dielectric functions and constants. A nomenclature of them is
provided in Appendix B.

2. Implicit solvent model and energy calculation

In this section, we first briefly review the super-Gaussian Poisson Boltzmann

(PB) model [13]. We then present how the polar solvation free energy is
calculated.

2.1. Super-Gaussian Poisson-Boltzmann model

Consider a solute macromolecule such as a protein immersed in an aque-
ous solvent. Define a cubic domain Ω ⊂ R

3, comparatively larger than the

macromolecule itself. In the super-Gaussian PB model [13], the domain Ω
consists of three regions [Fig. 2(a)]: an interior domain Ωi for solute, an ex-

terior domain Ωe for solvent, and a transition layer Ωt in between Ωi and Ωe

as a smooth solute-solvent boundary. Denote the boundary of Ω as ∂Ω. The

interface between Ωi and Ωt as Γi and the other interface Γe lies between

Ωt and Ωe. The subdivisions of Ω can be characterized by a surface function
S(�r) for �r ∈ Ω which equals to one and zero, respectively, in Ωi and Ωe. As

�r travels from interior to exterior zone, S(�r) decreases monotonically from
one to zero [Fig. 2(b)], so that S(�r) is at least a C2 continuous function over
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Figure 2: (a) The subdomain setting used in the super-Gaussian PB model.
(b) The subdomains are characterized by a surface function S, which is
plotted along a straight line.

the entire domain Ω. Following the original work [13], the surface function
S(�r) is generated by the minimal molecular surface (MMS) model [4, 5, 23].

The electrostatic interaction of this solute-solvent system is governed by
the nonlinear Poisson Boltzmann (PB) equation [15, 2, 3]

(1) −∇ · (εsG(�r)∇u(�r)) + (1− S(�r))κ2 sinh(u(�r)) = S(�r)ρm(�r),

where u(�r) is the electrostatic potential and εsG(�r) is the super-Gaussian
dielectric distribution. The singular source term for Nm atoms is

(2) ρm(�r) = 4π
ec

2

kBT

Nm∑
j=1

qjδ(�r − �rj).

On the outer boundary ∂Ω, a modified Debye-Hückel boundary condition
can be assumed

(3) u(�r) =
ec

2

kBT

Nm∑
j=1

( qj
εsrj

)exp [√ κ̄2

εs
(aj − rj)

]
1 +
√

κ̄2

εs
aj

.

Here qj is the partial charge, aj is the radius and �rj is the center of the jth

atom. Also, rj is defined as |�r−�rj |. The other specifications of the parameters
can be found in the appendix A. The singular source term is only defined
within Ωi with S(�r) = 1 there. Thus, we have S(�r)ρm(�r) = ρm(�r) in Eq. (1).

Regarding the dielectric models, Gaussian dielectric distribution [16, 17]
is one of the smooth dielectric models which are designed to overcome the
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discontinuity of classical two-dielectric PB model. The super-Gaussian di-
electric model [13] is further introduced to address the low regularity issue
of the Gaussian PB model in the vacuum state. The super-Gaussian density
of the jth atom is given as:

(4) gsj (�r) = exp

[
−
( |�r − �rj |2

σ2R2
j

)m]
.

If m = 1, then the equation (4) presents the Gaussian density function.
On the other hand, if m tends to infinity, a “hard sphere” density can be
obtained, i.e., gj = 1 inside the Van der Waals (VDW) ball and gj = 0
otherwise. The steepness-quality of the higher order Gaussian function is
controlled by two parameters, namely m: power (> 1) and σ: relative vari-
ance of the super-Gaussian function (4). In actual numerical experiments,
m = 2 or 3 is commonly used.

To describe the entire protein, the total density function is given by:

(5) gs0(�r) = 1−
Nm∏
i=1

[1− gsj (�r)].

Note that the total density function gs0 can describe the density for over-
lapped region covered by multiple atoms. For instance, the product gigj
accounts for the density of the overlap region due to the ith and jth atoms.
As the dielectric treatment considered the macromolecular region as a het-
erogeneous medium, another parameter εgap was introduced. Physically, a
preassigned constant εgap represents the maximum dielectric value of the
cavity fluid inside a protein [18]. An appropriate value of εgap depends on
the real protein system and it belongs to (εm, εs]. Now considering the pres-
ence of cavities inside the proteins, dielectric distribution within a protein
region is calculated as

(6) εin(�r) = εmgs0(�r) + εgap[1− gs0(�r)] = εm + (εgap − εm)

Nm∏
i=1

[1− gsj (�r)].

The super-Gaussian dielectric distribution involved S with εin and 1 − S
with εout:

(7) εsG(�r) = S(�r)εin(�r) + [1− S(�r)]εout,

where εout can be water-phase, vacuum phase or any other solvent phase.
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That means εsG can be seen as:

(8) εsG(�r) =

⎧⎨
⎩

εin, �r ∈ Ωi

εt, �r ∈ Ωt and εt ∈ [εm, εout]
εout, �r ∈ Ωe.

Here εt is controlled by the super-Gaussian density function (4), εgap and the
surface function S. Since S(�r) changes from one to zero across Ωt smoothly,
εsG(�r) changes from εm to εout. Therefore, εsG(�r) is at least C2 continuous
on the entire domain Ω.

2.2. Numerical discretization of the Poisson-Boltzmann equation

Following [13], a pseudo-time approach is employed to solve the nonlinear
PB equation (1). To this end, Eq. (1) is converted to a time dependent
partial differential equation (PDE) by adding a pseudo-time derivative

(9)
∂u

∂t
= ∇ · (εsG∇u)− (1− S)κ̄2 sinh(u) + ρm, in Ω,

with the same boundary condition (3). By using a trivial initial value u = 0,
one numerically integrates (9) for a sufficiently long time period to steady
state. The solution to the original nonlinear PB equation (1) is essentially
recovered by the steady state solution of the pseudo-time dependent process
(9).

One advantage of the pseudo-time approach [29, 10] is the analytical
treatment of the PB nonlinear term sinh(u). In particular, one can split the
time stepping of (9) into two subsystems in each time step. Then, the nonlin-
ear subsystem can be analytically integrated so that the nonlinear instability
is bypassed. For the linear subsystem, one actually solves a three-dimensional
(3D) heat equation. A finite different spatial discretization together the al-
ternating direction implicit (ADI) time stepping is employed for solving the
3D heat equation efficiently. In particular, by using the Douglas-Rachford
type ADI scheme, one reduces the 3D linear system into independent one-
dimensional (1D) systems in x, y, and z directions. The Thomas algorithm
is employed to solve such 1D systems with tridiagonal structures. We refer
to the original work [13] for more details.

2.3. Polar solvation free energy

The energy released when a solute macromolecule is dissolved in a solvent
is known as the free energy of solvation. The polar component of solvation
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free energy can be calculated in the PB model by computing the difference
between electrostatic energy of the macromolecule in the water and vacuum
states. In particular, for super-Gaussian PB model, the polar solvation free
energy can be calculated as
(10)

ΔG =
1

2
kBT

∫
Ω

Nm∑
j=1

qjδ(�r−�rj)(u(�r)−u0(�r))d�r =
1

2
kBT

Nm∑
j=1

qj(u(�rj)−u0(�rj)),

where u(�r) is the solution of the PB equation (1) and u0(�r) can be solved
from the Poisson equation (11):

(11) −∇ · (εsG(�r)∇u0(�r)) = ρm(�r),

where εsG(�r) is obtained by taking εout = 1. The boundary condition be-
comes

(12) u0(�r) =
ec

2

kBT

Nm∑
j=1

( qj
εoutrj

)
,

which is obtained by setting κ̄ = 0 in the modified Debye-Hückel boundary
condition (3).

2.4. Estimating polar solvation free energy

As mentioned earlier, the dielectric function εsG(�r) of the super-Gaussian
model is at least C2 continuous in both water and vacuum states. How-
ever, εsG(�r) is not monotonic across the solute-solvent transition layer in
the vacuum state. See for example Fig. 1(c). Physically, the dielectric func-
tion should decrease monotonically in the vacuum state whenever it leaves
the molecular region, just like the Gaussian dielectric model εG [Fig. 1(b)].
To avoid such a non-monotonicity issue, we propose to calculate the electro-
static free energy by choosing the base reference state to be different from the
vacuum. Note that the height of the inflation of εsG(�r) in the solute-solvent
boundary depends on the parameters εgap and εout. For each εgap, it is always
possible to choose εout = εgap such that εsG(�r) does not experience concavity
change outside the protein. The super-Gaussian PB model becomes “physi-
cal” in this new reference state, and the corresponding solvation free energy
can be calculated by using the above mentioned formulas. With this calcu-
lated electrostatic free energy using a new reference state, this study aims to
estimate the original solvation free energy. We note that a similar study has
been carried out in [24]. Nevertheless, the empirical formula developed in [24]
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may not be applicable to the present problem, because the super-Gaussian
PB model is more complicated than the two-dielectric PB model used in [24].

3. Multiple regression model

In this section, we will develop a multiple regression model for calculat-
ing electrostatic free energy (EFE) for the super-Gaussian PB model. That
means we will solve a physical problem: with EFE between water and refer-
ence states, how to recover the original energy between water and vacuum
states. In other words, if we denote ΔG12 as the EFE of the water-vacuum
case and ΔG13 as the EFE of the water-reference case, what is the best way
to retrieve the original EFE.

3.1. Energy estimation for a Kirkwood sphere

In order to develop a physically meaningful estimation, we first investigate
a simplified problem by considering a Kirkwood sphere. The electrostatic
interactions are assumed to be governed by the linearized PB equation with
a two-dielectric setting. In this case, one can analytically solve the solvation
free energies with different states. Then, our energy estimation problem can
be solved exactly.

Consider a Kirkwood sphere with radius being a and a point charge q
at its center. Denote r as the distance from the center of the atom. We first
introduce three different dielectric constant settings:
Setting 1: Molecule – Water

(13) ε1 =

{
εm = 1 r < a,
εW = 80 r > a.

Setting 2: Molecule – Vacuum

(14) ε2 =

{
εm = 1 r < a,
εV = 1 r > a.

Setting 3: Molecule – Reference Medium 1 (RM1)

(15) ε3 =

{
εm = 1 r < a,
εRM1 = 8 r > a.

In the reference medium, we choose εRM1 = 8, because εgap is often taken
to be 8 in the Super-Gaussian simulations [13].
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We aim to estimate ΔG12 based on ΔG13, where ΔG12 denotes the EFE
calculated based on the water (setting 1) and vacuum (setting 2) states, and
ΔG13 is defined as the EFE calculated based on the water state (setting
1) and a reference state (setting 3). To this end, we will derive a generic
formula for calculating the polar solvation free energy for the Kirkwood
sphere. Similar studies have been carried out before, see for example [14, 11].
A self-contained description on the derivation of the generic energy formula
(48) is presented in the Appendix A.

For one atom model, by the definition Eq. (10), the water-vacuum state
EFE can be calculated as

ΔG12 =
1

2
KBT

∫
qδ(�r)(uW (�r)− uV (�r))d�r

=
1

2
q2e2c

1

a

⎡
⎢⎣ 1(√

κ̄2

εW
a+ 1

)
εW

− 1

εV

⎤
⎥⎦ .(16)

It is noteworthy that the EFE ΔG12 does not depend on the molecular
region’s dielectric constant εm. In the water state, we follow the setting 1 or
Eq. (13), while in vacuum state, the dielectric distribution follows the setting
2 or Eq. (14). If we consider the solvation free energy for transforming the
macromolecule from a low dielectric reference medium to the water, we have

ΔG13 =
1

2
KBT

∫
qδ(�r)(uW (�r)− uRM1(�r))d�r

=
1

2
q2e2c

1

a

⎡
⎢⎣ 1(√

κ̄2

εW
a+ 1

)
εW

− 1

εRM1

⎤
⎥⎦ .(17)

As before, for the water and reference media, we use the setting 1 and 3
respectively.

By comparing Eqs. (16) and (17), we propose to estimate ΔG12 based
on ΔG13 by using the formula

(18) ΔG12 = ΔG13 +
q2e2c
2a

(
1

εRM1
− 1

εV

)
,

for the Kirkwood sphere model. We note that the estimation formula (18)
is exact for the one atom model with a two-dielectric setting. Moreover, all
parameters involved in (18) are known.
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Figure 3: (a) Super-Gaussian dielectric in water (blue) and vacuum (red)
state. (b) Super-Gaussian dielectric in water (blue) and reference medium
(bright pink) state.

3.2. Energy estimation for the super-Gaussian PB model

We next consider the estimation of EFE for proteins in the framework of the
super-Gaussian PB model. Similarly, we define ΔG12 as the EFE between
the water and vacuum states, while ΔG13 is between the water state and a
reference state. In particular, the dielectric functions of the water, vacuum,
and reference states are all calculated by Eq. (7) with εout = 80, 1, and εgap,
respectively. We note that with εout = εgap, εsG increases monotonically in
the solute-solvent boundary (see Fig. 3), so that the super-Gaussian PB
model becomes “physical” in this new reference state. Thus, when we apply
the super-Gaussian PB model to analyze electrostatics of real proteins, it is
preferred that with the calculated ΔG13 value, one can directly estimate the
original EFE ΔG12. A regression formula will be developed for this purpose.
Moreover, the accuracy of this formula will be assessed by calculated ΔG12

values via the super-Gaussian PB model.
Consider a macromolecule consisting of Nm atoms, having centers at

�rj , radii aj and charges qj . The regression formula to be developed is built
based on the physical law for Kirkwood sphere. From the modeling point
of view, there are several differences between the present system and the
Kirkwood sphere, such as a heterogeneous dielectric profile Vs. a piecewise
dielectric constant, and a nonlinear PB equation Vs. a linearized PB equa-
tion. Moreover, with multiple atoms or charges, the electrostatic interaction
among atoms is unavoidable now. Nevertheless, our hypothesis is that the
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physical law underlying the Kirkwood sphere could provide at least a low
order approximation to the desired EFE. In particular, we assume the EFE
between water and vacuum states can be expressed as

(19) ΔG12 =
1

2
q2e2c

Nm∑
j=1

1

aj

⎡
⎢⎣ 1(√

κ̄2

εW
aj + 1

)
εW

− 1

εV

⎤
⎥⎦+A,

which is obviously generalized from Eq. (16). The polar solvation free en-
ergy of a single atom with other atoms being neglected represents one term
in the summation of Eq. (19). Thus, the superposition of such terms is the
collective energy of all atoms. The energy due to the electrostatic interac-
tions between the atoms is expressed as a correction term, say A, which
is unknown. Likewise, for the water and reference state, the EFE can be
calculated using the formula:

(20) ΔG13 =
1

2
q2e2c

Nm∑
j=1

1

aj

⎡
⎢⎣ 1(√

κ̄2

εW
aj + 1

)
εW

− 1

εRM1

⎤
⎥⎦+B,

where B is an unknown correction term too.

Motivated by the Kirkwood result, we assume that ΔG12 can be esti-
mated by ΔG13 in an additive manner. For this reason, we examine the
difference between two energies,

ΔG12 −ΔG13 =
1

2
q2e2c

Nm∑
j=1

1

aj

⎡
⎢⎣ 1(√

κ̄2

εW
aj + 1

)
εW

− 1

εV

⎤
⎥⎦+A

− 1

2
q2e2c

Nm∑
j=1

1

aj

⎡
⎢⎣ 1(√

κ̄2

εW
aj + 1

)
εW

− 1

εRM1

⎤
⎥⎦−B

=
( 1

εRM1
− 1

εV

) Nm∑
j=1

q2j e
2
c

2aj
+ A−B︸ ︷︷ ︸

Unknown

(21)

So, the equation (21) has two components: the first part with C =

Nm∑
j=1

q2j e
2
c

2aj

is known for a given protein but the second part A − B, the combined
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correction term, is unknown. A regression analysis will be conducted in the
next two sections to estimate A−B.

4. Regression model – a test case

Our final goal is to recover the electrostatic free energy (EFE) ΔG12 via the
EFE ΔG13 based on the reference medium 1. To test the proposed regression
model, we will consider a similar problem in this section, i.e., using ΔG13

to retrieve the EFE ΔG14 considering macromolecules in water and another
solvent, say reference medium 2. We call that dielectric set-up as setting 4.
For instance, for the Kirkwood sphere, the setting 4 can be defined as the
follows.

Setting 4: Molecule – Reference Medium 2 (RM2)

(22) ε4 =

{
εm = 1 r < a,
εRM2 = 12 r > a.

A multiple regression model will be developed and validated for energy esti-
mation. The benchmark is conducted via the super-Gaussian PB numerical
solutions for real proteins. Here we will follow a similar multi-atom structure
solvation free energy calculation as described in (21):

ΔG14 −ΔG13 =
( 1

εRM1
− 1

εRM2

) Nm∑
j=1

q2j e
2
c

2aj
+ A−B︸ ︷︷ ︸

Unknown

(23)

4.1. Date set and numerical setup

To create an appropriate regression model, first we considered a data set of
74 proteins studied in [6], which gives a representative sample of proteins
in the protein databank. The EFE values for both ΔG14 and ΔG13 were
calculated numerically using the super-Gaussian PB Solver [13]. For the
super-Gaussian density function, we considered m = 3 and σ = 1.3 in (4).
For both ΔG14 and ΔG13, the water state follows the setting 1 Eq. (13). Now
EFE ΔG14 is calculated considering the macromolecule being immersed first
into water Eq. (13), and then in the second reference medium Eq. (22). On
the other hand, ΔG13 is immersed into the first reference medium, setting
3 Eq. (15). The following discretization parameters are chosen in the super-
Gaussian PB model [13]: spacing Δx = Δy = Δz = 0.5Å, pseudo-time
increment Δt = 0.01 for solving the NPB equation and Δt = 0.1 for the
solvent case, the stopping time Te = 104 ×Δt with the tolerance level 10−3.
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Figure 4: (a) Super-Gaussian dielectric in water (blue) and reference medium
1 (bright pink) state. (b) Super-Gaussian dielectric in water (blue) and ref-
erence medium 2 (green) state.

4.2. A multiple regression model

In this paper, we assume that the unknown part of Eq. (23), i.e., A − B,

can be predicted by a function of several protein specific variables such as

(atomic) partial charges qj , number of atoms Nm of a protein, SES (solvent

excluded surface) volume and SES area. That means the equation (23) can

be written as:

ΔG14 −ΔG13 = C
( 1

εRM1
− 1

εRM2

)
+ f(Charge, Number of atoms, SES Volume, SES Area).(24)

For simplicity, we will denote Ỹ = ΔG14 −ΔG13 − C
( 1

εRM1
− 1

εRM2

)
. So,

Eq. (24) can be rewritten as

(25) Ỹ = f(Charge, Number of atoms, SES Volume, SES Area).

For the four features considered in (24), the charges are obviously related to

electrostatic interactions. The number of atoms determines the size of the

protein, and thus affects the solvation free energy. Moreover, the electrostatic

interactions between solute and solvent will also be influenced by the volume
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Figure 5: The line graphs of polar solvation free energies ΔG14 (water-RM2
states) and ΔG13 (water-RM1 states).

and area of SES [25]. Thus, the selection of four features in (24) is driven

by physical considerations.

Using the calculated EFE values of ΔG14 and ΔG13 for 74 proteins,

we next investigate the dependence of the function f on four features in

Eq. (24). We first plot ΔG14 and ΔG13 against the total number of atoms

Nm in Fig. 5. Since the reference media have comparatively close dielectric

constants (εRM1 = 8 and εRM2 = 12), there is a consistent pattern in ΔG13

and ΔG14, while several outliers are pretty obvious. To see the correlation

in more details, we calculate Ỹ = ΔG14 −ΔG13 − C
( 1

εRM1
− 1

εRM2

)
for 74

proteins, and plot Ỹ against the total number of atoms Nm in Fig. 6 (b). A

linear trend is clearly seen. As the number of atom increases, the quantity Ỹ

becomes smaller. Thus, in our regression model, we will assume Ỹ depends

on Nm in a linear manner.

We next consider the SES volume and area. We note that as a surface-

free model, the super-Gaussian PB model [13] does not explicitly define

a molecular surface separating the solute and solvent. Instead, the MSMS

software developed in [22] is employed in this work to calculate the SES

volume and area for 74 proteins. The MSMS package provides an efficient

generation of the SES based on a reduced surface, and has been adopted in

many PB models, as well as in visualization softwares, for molecular model-

ing. Through a similar analysis, we have concluded that Ỹ also depends on

the SES volume and area in a linear manner. In particular, the correlation

coefficient of Ỹ with Nm, SES area and SES volume are found to be −0.94,

−0.87 and −0.67, respectively.
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Figure 6: Trend of Ỹ = ΔG14 −ΔG13 − C
( 1

εRM1
− 1

εRM2

)
with respect to

(a) the total partial charge Q and (b) total number of atoms in a protein.

The partial charges carried by a protein can be regarded as a four-
dimensional data, i.e., for each charge, we know its location in terms of x,
y, and z coordinates, and charge values (negative or positive). Neglecting
all geometrical information, we consider only one feature for the charges

in this paper, i.e., the total charge Q =

Nm∑
j=1

qj . The plot of Ỹ against Q is

shown in Fig. 6 (a), which obviously does not display any pattern. This basi-
cally means that the feature Q is too abstract, and cannot capture the actual
charge profile of each protein. Nevertheless, a more advanced charge descrip-
tor will inevitably becomes much more complicated in regression analysis.
Thus, for simplicity, we will consider the dependence of Ỹ on the total charge
Q. We note that in a similar study [24], the electrostatic free energy of the
two-dielectric PB model is assumed to be dependent on |Q|0.65. There was
no physical justification why the power 0.65 is chosen. For the present data
set with 74 proteins, we have plotted Ỹ with respect to |Q| or |Q|0.65, and
the resulting graphs are similar to Fig. 6 (a). Since all such figures do not
manifest a clear pattern, we will simply use Q, instead of |Q| or |Q|0.65, for
our regression analysis.

In the plot of Ỹ against Q in Fig. 6 (a), a moving average trend is gen-
erated. It can be seen that the trend is roughly anti-symmetric with respect
to Q = 0, and is experienced at least three concavity changes. Obviously, it
is impossible to capture this trend with a linear function. A more realistic
model is to assume Ỹ as a polynomial function of Q. Moreover, instead of
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fixing the degree of such a polynomial, we will explore the best of fit by
considering the degree up to four. With the trend shown in Fig. 6 (a), it
seems unnecessary to employ an even higher degree.

In summary, we propose a multiple regression model P̃i for approximat-
ing Ỹ :
(26)

P̃i = b̃0 + b̃1Nm +

i∑
k=1

b̃k+1Q
k + b̃i+2(SESV ) + b̃i+3(SESA), i = 1, 2, 3, 4.

Here the polynomial degree for the total charge Q is denoted as i, which
could be 1, 2, 3, and 4. Based on the calculated Ỹ values for 74 proteins
[6], the least square fitting is conducted to determine the coefficients b̃i. The
results are presented in Table 1 for four regression models, i.e., P̃1, P̃2, P̃3,
and P̃4.

Table 1: Recovery of ΔG14: Least-square fitted coefficients for four regression
models P̃is

P̃i Intercept Nm Q Q2 Q3 Q4 SES Vol SES Area

P̃1 -67.58 -0.51 -2.35 - - - - 0.003 0.044

P̃2 -77.79 -0.51 -0.92 0.33 - - -0.003 0.044

P̃3 -74.75 -0.51 1.71 - 0.055 -0.035 - -0.002 0.046

P̃4 -77.84 -0.51 4.39 0.47 -0.081 -0.004 -0.003 0.046

Observing the coefficients, we can say that Qi and Nm have more impact
on the regression model than the SES generated components. The weight of
the total charge is changed from model to model but Nm has a consistent
contribution to P̃i. Moreover, the present data analysis shows that SESA
influences the prediction model more than SESV. From physical point of
view, the total partial charge and the volume of a protein remain to be
constants as the protein is immersed into a solvent. During the solvation
process, the conformation of the protein may change, which affects the SES
area. Moreover, the EFE could be determined by the induced surface charges
[20, 21], which are defined on the molecular surface. Due to these factors, the
SES area is more important than the SES volume in an energy prediction
model.

4.3. Validation of the multiple regression model

We next validate the regression model P̃i defined by Eq. (26), with the
fitting coefficients given in Table 1. To assess the estimation accuracy, we
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Figure 7: Recovery of ΔG14: Plots of the relative error (P̃4 − Ỹ )/Ỹ against
(a) the total charge Q and (b) total number of atoms Nm.

could compare estimate P̃i value against the actual Ỹ value for each protein.
Alternatively, we could also compute the recovered EFE

(27) ΔGR
14 = ΔG13 + C

( 1

εRM1
− 1

εRM2

)
+ P̃i,

where the superscript denotes the recovered value. Then we can benchmark
ΔGR

14 with respect to the actual ΔG14.

Table 2: Model P̃i’s validation result

P̃i Multiple R-Squared for P̃i Correlation Coeff between ΔGR
14 and ΔG14

P̃1 0.8942 0.803

P̃2 0.8967 0.803

P̃3 0.8982 0.806

P̃4 0.8994 0.808

To quantify the energy estimation, the R-squared statistic is calculated
in Table 2, which provides a measure of how well the model is fitting the
actual data. Among the multiple regression models, the model P̃4 is the
best fitting model for Ỹ . In particular, P̃4 accounts for roughly 89.94% of
the variance found in the response variable (Ỹ ) that can be explained by the
predictor variables (Qi, Nm, SESV and SESA). Correspondingly, the best
Pearson correlation coefficient between ΔGR

14 and ΔG14 is achieved by the
model P̃4. We also note that all Pearson correlation coefficients are pretty
high for the present fitting test.

We will next focus on the assessment of the P̃4 model. To this end,
the relative error (P̃4 − Ỹ )/Ỹ is computed for each protein, and such an
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error is plotted against the total charge Q and total number of atoms Nm

in Fig. 7. Two box-plots are drawn in Fig. 7 against different scatter plots

as a measure of relative standing. In particular, the upper (third quartile)

and lower (first quartile) edges are generated by enclosing 50% of relative

errors between them, while one quarter of errors is above the upper edge

and another quarter is below the lower edge of the boxes. It can be seen that

half of the relative errors is within the inter-quartile range [-0.0285,0.0595].

Moreover, the median value of all relative errors is 0.005, which means that

the relative errors stay mostly around zero.

For each box shown in Fig. 7, two horizontal bars are plotted at locations

automatically determined by the upper and lower edges of the box. Data

points beyond such two bars can be regarded as outliers statistically. It is

seen that there are six outliers in the relative error boxplot: two of them

(PDB id: 3ZR8 and 1VB0) are below the bottom bar and four of them

(PDB id: 4HGU, 4O8H, 4GA2, and 5IG6) are above the top bar. Here the

bottom bar is Q1 − 1.5× IQR and the top bar is Q3 +1.5× IQR where Q1

and Q3 are the first and third quartiles, respectively. Also, IQR stands for

inter-quartile range. In all cases in Fig. 7, [Q1−1.5×IQR,Q3+1.5×IQR] =

[−0.14, 0.17]. The existence of outliers depends on the choice of the protein-

set and accordingly, it affects the regression model. Now, the outliers are not

size(Nm)-dependent but there might be some relation with the total charge.

There are two turns around Q = −6 and Q = 4 in Fig. 6 and the outliers

exist around those critical charges.

This test case of energy estimation (recovering ΔG14) establishes that

the regression model (26) is a reasonable construction with the global vari-

ables including total charge, number of atoms, solvent excluded area and

volume corresponding to a particular protein. In the next section, we will

construct a similar model to recover ΔG12.

5. A regression model for energy estimation

To create a regression model similar to equation (26), we will maintain the

same numerical structure except the EFE pairs. Now we will try to recover

the EFE ΔG12 by using ΔG13. A replica of the model (23) can be formed

as:

ΔG12 −ΔG13 = C
( 1

εRM1
− 1

εV

)
+ f(Charge, Number of atoms, SES Volume, SES Area).(28)
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Figure 8: The line graphs of polar solvation free energies ΔG12 (water-
vacuum states) and ΔG13 (water-RM1 states).

Figure 9: Trend of Y = ΔG12 −ΔG13 − C
( 1

εRM1
− 1

εV

)
with respect to (a)

the total partial charge Q and (b) total number of atoms in a protein.

Therefore, the regression model can be written as:

(29) Y = f(Charge, Number of atoms, SES Volume, SES Area).

where Y = ΔG12 −ΔG13 − C
( 1

εRM1
− 1

εV

)
.

Calculating the EFE values of ΔG12 andΔG13 by using the super-

Gaussian model, we first plot ΔG12 and ΔG13 in Fig. 8. The correlation

between ΔG12 and ΔG13 can be seen, but the difference between them is

much higher than that in the previous test case.
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Next, we will calculate Y =ΔG12 −ΔG13 − C
( 1

εRM1
− 1

εV

)
for the same

set of 74 proteins. The behavior of Y against the total charge and the num-

ber of atoms presents an opposite trend. As the Fig. 8 shows ΔG12 < ΔG13,

the trend lines in Fig. 9 are flipped in comparison to those in Fig. 6. The

number of atoms Nm shows a linear relation with Y whereas the total charge

Q shows some nonlinear relation with Y . The correlation between Y and Nm

is 0.99. In the prediction model, SES area and volume predictors are also

employed. The Pearson correlation coefficient of Y with SES area and SES

volume are found to be 0.92, and 0.70, respectively.

Regarding the total partial charge Q, we will follow the same choice

with the degree of the Q-polynomial. Therefore, the regression models Pi

following the same equation (26), consider Nm, an ith degree polynomial in

Q, SES area and volume. Here are the coefficients of four regression models:

Table 3: Recovery of ΔG12: Least-square fitted coefficients for four regression
models Pis

Pi Intercept Nm Q Q2 Q3 Q4 SES Vol SES Area
P1 70.09 11.52 57.59 - - - 0.024 -0.29
P2 251.86 11.48 32.06 -5.94 - - 0.024 -0.29
P3 204.91 11.55 -8.45 -1.64 0.54 - 0.020 -0.31
P4 264.69 11.55 -60.35 -9.71 1.43 0.079 0.025 -0.32

Observing the coefficients, the intercepts have much higher value in

comparison to Table 1, especially for P2, P3 and P4. This happens because

|ΔG12 − ΔG13| > |ΔG14 − ΔG13|. The predictors Qi and Nm have more

impact on the regression model than the SES generated components. More-

over, the present data analysis shows that SESA influences the prediction

model more than SESV.

5.1. Validation of the multiple regression model

We next validate the regression models Pi defined by Eq. (26), with the

fitting coefficients given in Table 3. To assess the estimation accuracy, we

could compare estimate Pi value against the actual Y value for each protein.

Here Y = ΔG12 −ΔG13 − C
( 1

εRM1
− 1

εV

)
. Since our final goal is to retrieve

the EFE ΔG12, we can compute the recovered EFE using the formula:

(30) ΔGR
12 = ΔG13 + C

( 1

εRM1
− 1

εV

)
+ Pi, i = 1, 2, 3, 4
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Table 4: Model Pi’s validation result

Pi Multiple R-Squared for Pi Correlation Coeff between ΔGR
12 and ΔG12

P1 0.9829 0.371
P2 0.9842 0.509
P3 0.9848 0.515
P4 0.9855 0.522

Figure 10: Recovery of ΔG12: Plots of the relative error (P4−Y )/Y against
(a) the total charge Q and (b) total number of atoms Nm.

where the superscript denotes the recovered value. Then we can compare

ΔGR
12 with respect to the actual ΔG12.

Just like the test case in section 4, the R-squared statistic is calculated

in Table 4. Among the multiple regression models, the model P4 is the best

fitting model for Y again. In particular, P4 accounts for roughly 98.55%

of the variance found in the response variable (Y ) that can be explained

by the predictor variables (Qi, Nm, SESV and SESA) whereas correlation

coefficient between ΔGR
12 and ΔG12 is 0.522.

If we compare Table 2 and Table 4, we see that the multiple R-squared is

improved for ΔGR
12 model but Pearson’s correlation coefficient is impaired.

We believe this is due to the underlying super-Gaussian PB model. In par-

ticular, the super-Gaussian model produces reasonable energy values for

RM1 and RM2, but in the vacuum state, the dielectric setting of the super-

Gaussian model becomes unphysical. This affects the accuracy of ΔG12 cal-

culated based on the vacuum state. Here, our assumption is that if the EFE

ΔG12 is accurate enough, the Pearson correlation in Table 4 should be as

good as that in between ΔGR
14 and ΔG14, because the same regression model

is employed.
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We will continue the discussion on the model P4. So far, the relative
error (P4−Y )/Y is computed for each protein, and such an error is plotted
against the total charge Q and total number of atoms Nm in Fig. 10. In
every case, the relative error of the prediction model P4 with respect to Y
stays within [−0.13, 0.13]. Moreover, the first, second (or median) and third
quartiles are −0.13, 0.003 and 0.13 respectively. It is noteworthy that half
of relative errors stay within [−0.0275, 0.0359]. In fact, 74% of the proteins
displays at most 5% absolute relative error. We present the EFEs ΔG12 and
ΔGR

12 in Table 5 corresponding to the relative errors in between the first
and third quartiles portrayed in Fig. 10.

From the boxplots Fig. 10, it is seen that there is one outlier below
the bottom horizontal bar, for which the present regression model fails,
i.e., protein 3ZZP. With a total charge number −2 and number of atoms
1211, the protein 3ZZP has a relative error −0.133, which is the smallest
among all 74 errors. This outlier has been detected by the system, and is
automatically plotted again along the center line, giving a red dot and blue
dot, respectively, for chart (a) and chart (b) in Fig. 10. On the other hand,
there is a data point located on the top horizontal bar. This protein, i.e.,
2IDQ, has a total charge number −3 and number of atoms 1596, whose
relative error 0.131 is larger than all other errors. Even though 2IDQ is not
counted as an outlier by the system, this protein is the only one out of 74
proteins that produces a positive recovered EFE ΔGR

12, no matter which
regression models Pi, for i = 1, 2, 3, 4, is used. This is more worrisome than
3ZZP for the present energy estimation. Thus, 2IDQ shall be regarded as an
outlier too in the present study. The exact reason for the failure of 2IDQ is
unknown. But it can be observed in Fig. 10 that all other relative errors are
below 0.08, showing a big gap below 2IDQ. Thus, it is believed that 2IDQ
has some certain features that are different from other proteins, but cannot
be captured in the present regression. A better model will be explored in
the future to avoid such an “unphysical” failure.

6. Conclusion

Motivated by a particular modeling issue of the super-Gaussian Poisson-
Boltzmann (PB) model [13], this work concerns with a general modeling
problem, i.e., estimating the electrostatic free energy by choosing the base
state to be different from the vacuum state. In particular, by taking the
dielectric constant of the new reference state to be εgap, one can avoid the
non-monotonicity issue of the super-Gaussian PB model, so that the compu-
tation of the electrostatic free energy between the water state and reference
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Table 5: Comparison of ΔG12 and ΔGR
12

PDB ID Nm Q ΔG12 ΔGR
12

3WDN 1914 -12 -3042.075061 -3253.348719
1TG0 1029 -12 -2611.139519 -2561.957145
4O6U 2552 -11 -2686.262865 -2852.487496
3WCQ 1448 -8 -1914.252593 -1938.214199
2FDN 731 -8 -1355.185727 -1315.194623
1TQG 1660 -7 -1640.593004 -1298.653407
2FWH 1830 -6 -1623.541645 -1518.306645
3GOE 1336 -6 -2153.565618 -2040.527032
1OK0 1076 -5 -1070.743789 -1351.878017
3IP0 2535 -5 -1790.548429 -1715.909294
1W0N 1756 -5 -1592.398371 -973.8559237
3X32 1385 -4 -1617.450867 -1586.969658
3X2L 2421 -4 -1472.218888 -1322.514651
2XOD 1864 -4 -1850.607524 -1711.895275
3LL2 1746 -3 -1287.760105 -1804.126202
2XOM 2295 -3 -2043.628016 -1972.403819
1ZUU 868 -3 -1110.367707 -1039.296041
4EIC 1296 -2 -909.4579074 -1169.233369
3FSA 1829 -2 -1376.802973 -982.8432334
1IUA 1207 -1 -849.3899532 -905.7186321
1X8Q 2815 -1 -2067.754522 -1970.935339
3WGE 1765 -1 -1685.750322 -1316.353232
3E4G 2877 -1 -2026.282006 -1378.979307
4TKB 2110 -1 -1522.031326 -909.1233775
2O9S 1083 0 -928.2530694 -1269.314727
1X6X 1732 0 -1372.905593 -1345.964193
1CBN 639 0 -303.1376225 -158.96884
4AQO 1274 1 -1376.773593 -1455.430707
1ZZK 1252 1 -1188.738167 -1206.167244
4A02 2554 2 -1401.469698 -1693.076462
2NLS 524 2 -561.5991996 -494.5326891
4GA2 2367 3 -2789.299641 -2940.374902
3ZSJ 2230 4 -1441.937554 -1805.619445
4XDX 1171 4 -1524.64128 -1358.106643
1VBW 1056 8 -1540.070188 -1641.030134
1L9L 1226 11 -2670.237417 -2412.235291

state becomes truly physical. Based on energies calculated using the refer-

ence state, a multiple regression model is proposed to recover the original

energies. Based on the analytical results for the Kirkwood sphere, the energy

recovery is conducted in an additive manner, and the contribution of each
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individual atom is accounted for explicitly. To estimate the difference be-

tween two energies, four simple physical descriptors are adopted, including

the total number of atoms, the total charge, and the volume and area of the

solvent excluded surface (SES). Detailed analysis is conducted to establish

the function form of these four dependent variables. The resulted multiple

regression model provides a satisfactory recovery for calculating electrostatic

free energies of a set of 74 proteins.

Two tests are conducted to verify the proposed multiple regression model.

In the first test, the energy estimation is considered by using reference

medium 1 (RM1) to predict reference medium 2 (RM2), where both RM1

and RM2 are physical reference states. The Pearson correlation between ac-

tual and recovered electrostatic free energy (EFE) is about 0.8. In the second

test, the EFE prediction based on RM1 is considered for the vacuum state.

Nevertheless, because the dielectric setting in the vacuum state becomes un-

physical, the actual energy calculated by the super-Gaussian model is quite

inaccurate. Consequently, the Pearson correlation between actual and re-

covered EFE can only reach 0.52. Thus, such a low correlation coefficient

does not mean that the regression model is ineffective. On the contrary, this

indicates that the proposed model can detect inaccurate EFE calculations

due to unphysical settings.

It is noted that four physical descriptors used in the present model are

global features that are readily available or can be easily generated for pro-

teins. It is expected that if local features involving structural details of

proteins, such as distribution of charges, geometrical and topological in-

formation of molecular surfaces, are taken into the consideration, the pre-

diction accuracy could be significantly improved. However, this is beyond

the scope of this work. We also note that the simplicity of the present model

allows it to be applied to other PB models for energy recovery. For exam-

ple, in the the Gaussian dielectric PB model [6], the dielectric function is

dumped to 1 by an exponential function for the vacuum state. Instead of

doing that, one could set ε = 20 outside the protein region or surface cut

zone. Then, the present regression model can be applied to recover the elec-

trostatic free energy by calculating the energy for the new reference state

with ε = 20.

The outliers of the present regression analysis have been carefully ex-

amined. In particular, there exists a protein that produces a positive or

unphysical energy estimation. The exact cause of this failure will be inves-

tigated in the future to improve the regression model.
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Appendix A. A Kirkwood sphere

The derivation of the electrostatic free energy formula for a Kirkwood sphere
with a two-dielectric setting is provided in this appendix. To be self-contained,
we first present the linearized Poisson-Boltzmann (PB) model for a general
solute-solvent system. In the classical two-dielectric setting, the domain Ω
is divided by a molecule surface Γ into two regions, namely the inner solute
domain Ωm and the outer solvent domain Ωs such that Ω = Ωm ∪ Ωs and
Ωm ∩ Ωs = Γ. Denote the boundary of Ω as ∂Ω. For �r ∈ R

3, the linearized
PB equation in dimensionless form is given as [14]

(31) −∇ · (ε(�r)∇u(�r)) + κ2u(�r) = ρm(�r),

where u is the electrostatic potential, and the singular source term is also
given by Eq. (2), in which Nm is the number of atoms, T is the temperature,
kB is the Boltzmann constant, ec is the fundamental charge. Here qj is the
partial charge on the jth atom of the macromolecule, located at its center
�rj , and aj is the radius of this atom.

In the two-dielectric PB model, the dielectric function ε(�r) is assumed
to be a piecewise constant

(32) ε(�r) =

{
εm, �r ∈ Ωm

εs, �r ∈ Ωs.

The modified Debye-Hückel parameter κ is a piecewise constant. It vanishes
in Ωm, i.e., κ = 0, while in Ωs, κ = κ̄ where κ̄2 = 8.486902807Å−2Is and
Is is the ionic strength of the solvent. Over the dielectric interface Γ, the
potential u satisfies two interface jump conditions [12]

(33) [u] = 0, and

[
ε
∂u

∂n

]
= 0,

where the notation [f ] = f+− f− represents the difference of the functional
value across the interface Γ, and the directional derivative ∂u

∂n is along the
outer normal direction of the interface Γ. On the boundary ∂Ω, a numerical
boundary condition (3) is usually assumed.

We next consider a one-atom system with Ωm being a Kirkwood sphere
with radius a. A partial charge q is assumed at the atom center, which is
also the origin of the coordinate system. See Fig. 11. The interface Γ is
simply a sphere. In order to derive an analytical solution, the entire space
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Figure 11: An illustration of the Kirkwood sphere with radius a and a charge
q at the atom center (0, 0, 0).

is considered with Ω = R3, and Ωs = R3\Ωm. The linearized PB model for

the Kirkwood sphere is given as

−∇ · (ε(�r)∇u(�r)) + κ2u(�r)) = 4πAqδ(�r −�0),(34)

lim
|�r|→∞

u(�r) = 0,(35)

where A =
e2c

kBT
. Denote the solution u inside and outside sphere as u− and

u+, respectively. Across the interface Γ, the potential u satisfies the jump

conditions (33). The boundary condition (35) is prescribed at the infinity.

A regularization formulation [12] will be adopted, which allows for an

easier derivation of the analytical solution u. In particular, the potential u

will be decomposed into two components, i.e., Coulomb component uC and

reaction-field component uRF . The Coulomb component will capture the

singularity of the system by satisfying a Poisson’s equation

(36) − εmΔuC(�r) = 4πAqδ(�r −�0),

and the same boundary condition (35) at the infinity. In fact, uC can be

solved analytically, and is expressed in terms of a Green’s function

(37) uC(�r) = G(�r) :=
Aq

εm|�r| =
Aq

εmr
,

where r = |�r|.



Regression analysis for electrostatic free energies of proteins 215

The reaction-field component uRF will satisfy a source-free linearized PB
equation [12]. In particular, one can recast such an equation into the spher-
ical coordinate (r, θ, ϕ). Due to the rotational symmetry of the Kirkwood
sphere model, all involved functions do not change in θ and ϕ directions.
Thus, the PB equation can be reduced to an ordinary differential equation
(ODE) in the radical direction r. Consequently, uRF satisfies an ODE in the
Ωm

(38) − εm
1

r2
d

dr

(
r2

du−RF

dr

)
= 0, r < a,

where we have added a superscript to uRF to denote that this solution is
within the sphere Ωm. The general solution to this ODE is

u−RF = C1 +
C2

εmr
.

Since uC captures the singularity, uRF should be bounded everywhere [12].
This rules out the second term, i.e., we have to take C2 = 0, so that
u−RF = C1. By combining both Coulomb and reaction-field components,
the electrostatic potential inside the sphere takes the form

(39) u− = C1 +
Aq

εmr
, r < a,

where the constant C1 is to be determined.
In Ωs, the linearized PB equation (34) reduces to

(40) − εs
1

r2
d

dr

(
r2

d

dr
u+
)
+ κ̄2u+ = 0, r > a.

The general solution of this ODE is

u+ = C3
e
−
√

κ̄2

εs
r

r
+ C4

e

√
κ̄2

εs
r

2
√

κ̄2

εs
r
.

As r goes to infinity, the boundary condition (35) requires that u+ = u
approaches to zero. Thus, we have to take C4 = 0. Consequently, the elec-
trostatic potential outside the sphere takes the form

(41) u+ = C3
e
−
√

κ̄2

εs
r

r
, r > a,
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where the constant C3 is to be determined.

To determine the unknown constants C1 and C3, one can substitute
solutions (39) and (41) into the jump conditions (33) over the interface
r = a

(42)

{
u−(a) = u+(a),

εm
∂
∂ru

−(a) = εs
∂
∂ru

+(a),

where the normal direction is the radical direction. The continuity of poten-
tial gives rise to

(43) C1 +
Aq

εma
= C3

e
−
√

κ̄2

εs
a

a
.

Since
du−

dr
= − Aq

εmr2
and

du+

dr
= −C3

e
−
√

κ̄2

εs
r
(√

κ̄2

εs
r + 1

)
r2

, the continuity of

flux yields

(44) − εm
Aq

εma2
= −εsC3

e
−
√

κ̄2

εs
a
(√

κ̄2

εs
a+ 1

)
a2

.

By solving equations (43) and (44) algebraically, we obtain

C1 =
Aq

a
(√

κ̄2

εs
a+ 1

)
εs

− Aq

aεm
, and C3 =

Aqe

√
κ̄2

εs
a

εs

(√
κ̄2

εs
a+ 1

) .
Therefore, the potential inside the Kirkwood sphere is

(45) u− = C1 +
Aq

εmr
=

Aq

a
(√

κ̄2

εs
a+ 1

)
εs

− Aq

aεm
+

Aq

εmr
, r < a,

while for the outside, it takes the form
(46)

u+ = C3
e
−
√

κ̄2

εs
r

r
=

Aqe

√
κ̄2

εs
a

εs

(√
κ̄2

εs
a+ 1

) e−
√

κ̄2

εs
r

r
=

Aqe

√
κ̄2

εs
(a−r)

εs

(√
κ̄2

εs
a+ 1

)
r
, r > a.

The electrostatic free energy of the Kirkwood sphere can be analytically
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computed based on the potential values

(47) ΔG =
1

2
kBT

∫
R3

qδ(�r−�0)(u−(�r)−uC(�r))d�r =
1

2
kBTq(u

−(�0)−uC(�0)),

where u− is given by Eq. (45) and uC is given by (37). Therefore,

ΔG =
1

2
qA

⎛
⎜⎝ q

a
(√

κ̄2

εs
a+ 1

)
εs

− q

aεm

⎞
⎟⎠ kBT(48)

=
1

2
q2e2c

1

a

⎛
⎜⎝ 1(√

κ̄2

εs
a+ 1

)
εs

− 1

εm

⎞
⎟⎠ ,

where ΔG is in the unit kcal/mol.

Appendix B. Nomenclature

• εm: Dielectric constant in the
molecular part

• εs: Dielectric constant in the
solvent part

• εW : Dielectric constant in wa-
ter state

• εV : Dielectric constant in the
vacuum state

• εRM1: Dielectric constant in
the reference medium 1

• εRM2: Dielectric constant in
the reference medium 2

• εsG: Super-Gaussian dielectric
model.

• εin: Dielectric constant in-
side a macromolecule (includ-

ing atomic part and cavities)
• εout: Dielectric constant out-
side the molecular region (εin)
which can be any of these
{εW , εs, εV , εRM1, εRM2}

• εgap: Dielectric constant of the
cavity region in a protein

• εmax: Maximum dielectric con-
stant of the cavity region in a
protein

• ε1: Two dielectric model
(molecule-water)

• ε2: Two dielectric model
(molecule-vacuum)

• ε3: Two dielectric model
(molecule-reference)
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