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Benchmarking electrostatic free energy of the
nonlinear Poisson-Boltzmann model for the
Kirkwood sphere

SYLVIA AMIHERE, WEIHUA GENG, AND SHAN ZHAO*

Various numerical packages have been developed to solve the Poisson-
Boltzmann equation (PBE) for the electrostatic analysis of solvated
biomolecules. A common benchmark test for the PBE solvers is
the Kirkwood sphere, for which analytical potential and free en-
ergy are available for the linearized PBE. However, the Kirkwood
sphere does not admit analytical solution for the nonlinear PBE
involving a hyperbolic sine term. This paper proposes a simple
numerical approach, so that the energy of the Kirkwood sphere
for the nonlinear PBE can be calculated at a very high precision.
This provides a new benchmark test for the future developments
of nonlinear PBE solvers.

KEYWORDS AND PHRASES: Nonlinear Poisson-Boltzmann equation, Kirk-
wood sphere, matched interface and boundary (MIB), electrostatic free
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1. Introduction

The Poisson-Boltzmann (PB) equation, as a mean field model, is widely
used as the governing equation of electrostatics for solvated biomolecules
in a solvent environment with dissolved electrolytes [9, 1]. Under the as-
sumption that all mobile ions are univalent in the solvent, the Boltzmann
distribution terms of the PB equation can be combined into a hyperbolic
sine term, giving rise to a nonlinear elliptic boundary value problem. When
the underlying electrostatic potential u is weak, the nonlinear PB model can
be approximated by the linearized PB model, obtained by replacing sinh(u)
with u. If the solvent is free of mobile ions, the PB equation reduces to a
Poisson equation.

Due to the complex geometries of three-dimensional (3D) biomolecules,
the solution of the PB equation has to be conducted numerically for real
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protein systems. Furthermore, several numerical difficulties are well known in
solving the PB equation, including unbounded domain, nonlinearity, singular
sources, complex molecular surface, discontinuous dielectric coefficients, etc.
To overcome these difficulties, various PB solvers have been developed in
the literature, such as [10, 3, 13, 8, 11, 4].

To validate the PB solvers, the Kirkwood sphere [7, 10, 6] is frequently
adopted as a benchmark test, in which a partial charge is assumed at the
center of a dielectric spherical cavity immersed in the solvent. For both
linearized PB (LPB) and Poisson equations, the Kirkwood sphere admits
analytical solutions for both potential and electrostatic free energy. More-
over, for Kirkwood sphere with off-center charges, series solutions are also
available [10]. However, for the nonlinear PB (NPB) model, no analytical
solution is known for the Kirkwood sphere.

The goal of this paper is to develop a highly accurate numerical proce-
dure for calculating electrostatic free energy of the Kirkwood sphere for the
NPB model. Taking advantage of the rotational symmetry, the 3D bound-
ary value problem (BVP) of the NPB equation will be first reduced to a
one-dimensional (1D) BVP over an unbounded domain. By truncating the
unbounded domain into a bounded one with sufficient length, a new NPB-
BVP is proposed. By resolving the resulting Neumann and Dirichlet bound-
ary conditions through the matched interface and boundary (MIB) scheme
[15, 12], a high order finite difference discretization is formulated, which
could provide an estimation of electrostatic free energy up to double pre-
cision limit. Therefore, the proposed numerical approach for the Kirkwood
sphere provides a new benchmark test for the PB solvers [10, 3, 13, 8, 11, 4]
so that their performance for solving the NPB model could be accurately
assessed.

The rest of this paper is structured as the follows. The proposed numer-
ical approach is discussed in Section 2. Numerical validation for both LPB
and NPB energies is reported in Section 3. Finally, this paper ends with a
conclusion.

2. Theory and algorithm

Consider a dielectric molecule or Kirkwood sphere with a radius a being
immersed in the solvent with mobile ions. A partial charge ¢ is assumed
at the spherical center, which is also the origin of the coordinate system.
The spherical interface I' divides the domain 2 = R? into a molecule region
Q™ and a solvent region Q1. The electrostatic interaction of this system is
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governed by the nonlinear Poisson-Boltzmann (NPB) equation [7, 9, 1].

—V - (eVu(7)) 4+ k2 sinh(u(7)) = 4rCqd(7 — 0), 7e Q
(1) [u] =0, and [ean] 0, rel
u(r) =0, 7] — o0

where u is the electrostatic potential which vanishes at infinity. Here € is a
piecewise dielectric constant, i.e., € = ¢~ and € = €T, respectively, in Q~
and QF, and C is a constant. The Debye-Huckel parameter x vanishes in
)~ and it is a constant depending on the ionic strength I of the solvent in
Q. The reader can refer to [7] for more details about definition and units of
these coefficients. Across the dielectric interface I', the potential u satisfies
two jump conditions in (1), where the notation [f] = f™ — f~ represents the
difference of the functional value across the interface I', and the directional
derivative g—z is along the outer normal direction of I'.

In a spherical coordinate system (r, 8, ¢), the Kirkwood system is invari-
ant in 6 and ¢ directions, so that the potential is actually a function in radial
direction r = || only, i.e., u(r). Thus, the NPB equation (1) can be reduced
to an ordinary differential equation (ODE). Moreover, u~(r) and u*(r) for
r < a and r > a, respectively, can be solved separately. In particular, the
potential ™~ (r), that satisfies
(2) - e_%(zn(rzdiru_) =4rCqé(r), r <a,
in 27 and has a bounded reaction field component, can be analytically given
as [6]

_ C
(3) u (r)=G(r)+C = Eq—i-Cl, r<a,
where G(r) = % is the Green’s function and the constant C is unknown.
For r € [a,0), ut(r) satisfies a nonlinear ODE. We note that the flux
jump condition given in (1) now becomes [6%] =0at r =a. For r < q,
the solution (3) glves rise to dLT = qu Using the jump condition, we
have %(a) = S (q) = E€a2, which will be treated as a boundary

condition at r = a. Thus, u™(r) satisfies the following nonlinear boundary
value problem (BVP)

o [eegn et 0 el
%(G) = ngu and  lim, ut =0.
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Since the BVP Eq. (4) does not admit an analytical solution, we will solve it
numerically. Because the potential u is known to be exponentially decaying
as r — oo [7, 6], we will first truncate the infinity domain [a, c0) to a finite
one [a,b], with b being sufficiently large. Then, a Dirichlet zero boundary
condition can be assumed at r = b. Therefore, we propose to solve the
following 1D BVP with notations u(r) = u*(r), u/(r) = % and A = \/k2/e"

5) u” + 20’ — N sinh(u) = 0, r € la,b]
u'(a) = —69—32, and u(b) =0.

In the present study, the Newton’s scheme [11] will be employed for
solving the NPB equation and a high order finite difference approximation
will be considered. A uniform grid is employed to partition [a,b] with a
spacing h. By treating the Neumann and Dirichlet boundary conditions
by the Matched Interface and Boundary (MIB) scheme [15, 12], central
difference discretization with orders being two, four, six, and eight will be
constructed. We note that C; = u™ (a) — g—qa = ut(a) — g—‘i, in which
the potential jump condition has been applied. Thus, after solving u™(r)
numerically, a numerical value of C is available based on u™ (a). This allows
us to calculate the electrostatic free energy of the Kirkwood system [10]

kT

WSO (7) ~ G dr =21 [ 4501 = SkaTaCh,

 kpT

(6) B==2

where kp is the Boltzmann constant and 7T is the room temperature. With
a proper unit conversion [11], the electrostatic free energy will be reported
in the unit of kcal/mol.

3. Numerical validation

Consider a Kirkwood sphere with radius @ = 2A and a point charge at
the atom center. The dielectric constant for the molecule and solvent is,
respectively, e~ = 1 and €™ = 80. The ionic strength is taken as I, = 0.15M.

We first validate the proposed procedure by studying the linearized
Poisson-Boltzmann (LPB) equation, which is obtained by replacing sinh(u)
by u in Eq. (1). In particular, the LPB version of the BVP Eq. (4) has an
analytical solution u™(r) = % exp(—Ar) for r > a. By imposing two jump

conditions at » = a, the unknown constants C; and C5 can be uniquely
determined. Then, the analytical potential and electrostatic free energy are
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Figure 1: Numerical accuracy in approximating electrostatic potential of the
LPB equation for the Kirkwood sphere with ¢ = 1. Left: Lo error; Right:
L error.

given as [6]

quA((Z*T‘)

1 Cq Cq
(7) U+(7"):m, r>a, and F = §]€BT(] (6+ —> .

(Aa+1)a ea

Our first test involves numerically solving the LPB version of the BVP
Eq. (5) by the MIB method, and comparing the numerical potential with
the analytical one given in Eq. (7). A sufficiently large b = 100a is employed
so that the error associated with the truncation of the infinity domain is
negligibly small. By taking ¢ = 1 and using different spacing h or mesh size
N, numerical errors in terms of Ly and L., norms are reported in Fig. 1.
Four MIB finite difference discretizations are employed, with the designed
order of accuracy being two, four, six and eight, namely the MIB2, MIB4,
MIB6 and MIBS8 schemes. It can be seen that as h decreases, the errors
decay quickly. The MIBS8 scheme reaches the precision limit of the iterative
algebra solver so that its error becomes larger when h is further refined. To
verify the convergence, a least squares (LS) linear fitting is considered in
the logarithm scale, and the corresponding LS slope indicates the numerical
order. The LS slopes of four schemes are reported in Fig. 1. It is clear that all
four MIB methods achieve the desired convergence orders in approximating
the potential u.

To investigate the impact of charge value ¢, we repeat the LPB study of
the Kirkwood sphere by taking ¢ = —2. By using the same numerical setup,
the numerical errors and convergence rates are shown in Fig. 2. It can be
seen that the results of Fig. 2 are almost identical to those of Fig. 1. This
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Figure 2: Numerical accuracy in approximating electrostatic potential of the
LPB equation for the Kirkwood sphere with ¢ = —2. Left: Ly error; Right:
L error.
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Figure 3: Numerical error in approximating the LPB energy for different h
with a fixed b = 100a (left) and for different b with a fixed mesh size N
(right). The energy is benchmarked with the analytical value.

suggests that the convergence of the present approach is not affected by the
charge value ¢. In the following, we will only consider ¢ = 1.

We next approximate the electrostatic free energy of the LPB model,
whose analytical value is F = —82.188683337726175 kcal/mol according
to Eq. (7). To this end, the LPB version of the BVP Eq. (5) is solved by
the MIB8 scheme only. By fixing b6 = 100a, it can be seen from Fig. 3
that the absolute error in energy decays quickly as h decreases, and the
double precision limit is reached. The LS fitting shows that the numerical
convergence order in energy of the MIBS8 scheme is about six. By fixing the
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Figure 4: Numerical error in approximating the NPB energy for different A
with a fixed b = 100a (left) and for different b with a fixed mesh size N
(right). The energy is benchmarked with the reference value generated by
the proposed MIBS scheme.

number of mesh size as N = 6401, we have also examined the impact of
parameter b to the energy error. By taking several b values in [10a, 100a],
the energy error is depicted in Fig. 3. When b is small, the approximation of
the infinity domain BVP Eq. (4) by the finite domain BVP Eq. (5) produces
a large systematic error, indicating that a sufficiently large b is indispensable
for the proposed procedure. When b becomes larger, this error decays very
rapidly and is almost vanishing for b = 100a.

Based on the LPB results, a set of optimized parameter values will be em-
ployed in the proposed MIB8 method to generate a reference energy for the
present Kirkwood sphere. In particular, we will take b = 100a and N = 6401
or h = 0.0309. The corresponding LPB energy is F, = —82.188683337726545
kcal/mol with an error 3.69E-13. For the NPB case, the reference energy is
E, = —82.212210771856221 kcal/mol, whose error is estimated to be about
2.4E-12 by comparing with other NPB energies. By using the NPB refer-
ence energy, the numerical errors of the MIB8 scheme with respect to the
changes of h and b are depicted in Fig. 4. The convergence patterns are very
similar to those of the LPB case. This suggests that the proposed procedure
performs equally well for the NPB equation.

We finally consider a study to demonstrate the significance of the pro-
posed approach. To this end, the present Kirkwood sphere is numerically
solved by the 3D rMIB package [11], which is known to produce second
order convergence in electrostatic potential. In particular, a tight domain
Q) = [—4,4]? is employed, for which a Dirichlet zero boundary condition is
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Table 1: The Kirkwood energy calculated by the rMIB package [11] and the
present MIB8 scheme with successive mesh refinements. Here, the error is
calculated against the reference values generated by the MIB8 scheme

LPB
rMIB [11] MIBS8
h energy error energy error
1.0 —82.1660026 2.27TE-2 —82.1958558 T7.17E-3
0.5 —82.1769841 1.17E-2 —82.1889936 3.10E-4
0.25 —82.1825212 6.16E-3 —82.1886892 5.89E-6

0.125 —82.1861310 2.55E-3 —82.1886834 5.14E-8
0.0625 —82.1893892 7.06E-4 —82.1886833 2.45E-10

NPB
rMIB [11] MIBS8
h energy error energy error
1.0 —82.4181454 2.06E-1 —82.2201108 7.90E-3
0.5 —82.4285045 2.16E-1 —82.2125964 3.86E-4
0.25 —82.4351523 2.23E-1 —82.2122193 8.58E-6

0.125 —82.4365766 2.24E-1 —82.2122109 8.94E-8
0.0625 —82.4368539 2.25E-1 —82.2122108 4.99E-10

obviously invalid. Thus, a Dirichlet boundary condition is employed in the
rMIB package [10, 3, 11] for both LPB and NPB Kirkwood systems, i.e.,
u(7) = Cqexp (Ma — |7)) / (€ (Aa + 1)|7]) for ¥ € 9, which is obtained by
the analytical LPB potential Eq. (7). Benchmarked by the reference energies
generated by the MIB8 scheme, the errors of the rMIB energies are listed
in Table 1. For a comparison, the energies calculated by the present MIB8
scheme at the same spacing h are reported together with the corresponding
errors. For the LPB case, the rMIB energy converges rapidly to the refer-
ence energy. This is in agreement with the original rMIB study [11]. As a
high order scheme, the MIB8 method converges even faster for the LPB
energy. A similar high order convergence can be observed in the MIB8 for
the NPB energy. Nevertheless, the rMIB energy for the NPB case clearly
converges to a different value so that the error is non-diminishing. Such a
non-convergence issue is unknown to the rMIB developers, until the present
test. This issue is believed to be due to the use of a LPB boundary condi-
tion for the NPB solver. While there exist some remedies in the literature
[14, 2, 5], the development of appropriate boundary conditions for the NPB
equation deserves further study.
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4. Conclusion

This study introduces a highly accurate numerical approach for calculating
the energy of the Kirkwood sphere for the NPB equation. This provides
a new benchmark test for validating the PB solvers. A quick benchmark
test indicates that for a well-established PB solver with verified accuracy
in solving the LPB equation, the NPB energy is non-converging. We will
explore the boundary condition issue of the NPB equation in the future.

A remark about the convergence rate of energy estimation is in order.
It can be seen from Fig. 3 and Fig. 4 that the convergence rate of the MIB8
with respect to h is about 5.83 and 5.30, respectively, for the LPB and NPB
cases. For lower order methods, such rates become 2.00 and 1.99 for MIB2,
3.52 and 3.47 for MIB4, and 4.96 and 4.79 for MIB6. We note that except for
the MIB2, the other three schemes all experience some order reduction. The
same can be observed in Table 1 that the order of the rMIB energy estimation
is clearly less than two, while the rMIB method is known to produce second
order accurate potential solution [11]. This indicates that energy estimation
is numerically more challenging than approximating electrostatic potential.
Nevertheless, although a higher order method usually suffers a larger order
reduction, we can see that a higher order method still produces a more
accurate energy. This is why we have adopted up to 8th order MIB scheme
in the present study.
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