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ABSTRACT. In this paper, a new Cartesian grid finite difference method is
introduced to solve two-dimensional parabolic interface problems with second
order accuracy achieved in both temporal and spatial discretization. Corrected
central difference and the Matched Interface and Boundary (MIB) method are
adopted to restore second order spatial accuracy across the interface, while
the standard Crank-Nicolson scheme is employed for the implicit time step-
ping. In the proposed augmented MIB (AMIB) method, an augmented system
is formulated with auxiliary variables introduced so that the central difference
discretization of the Laplacian could be disassociated with the interface correc-
tions. A simple geometric multigrid method is constructed to efficiently invert
the discrete Laplacian in the Schur complement solution of the augmented sys-
tem. This leads a significant improvement in computational efficiency in com-
paring with the original MIB method. Being free of a stability constraint, the
implicit AMIB method could be asymptotically faster than explicit schemes.
Extensive numerical results are carried out to validate the accuracy, efficiency,
and stability of the proposed AMIB method.

1. Introduction. The paper is focused on the following two dimensional (2D)
parabolic interface problem

ou

ot
with Dirichlet boundary conditions imposed along the boundary 9S) of a given
rectangular domain. The whole domain is separated by an embedded interface into
two subdomains such that ' = QT N Q~, and Q = QT U Q™. In our study, we
specify QT as outer domain, and 2~ as inner domain. The diffusion coefficient 3 is
defined to be a piecewise constant in different subdomains. Across the interface T,
the function values of u from the two subdomains are associated by the following
jump conditions

V- (BVu)+ f, in QCR? (1)

[u] =u™ —u™ = ¢(z,y,1), (2)

[[ﬁunﬂ ::ﬁ+Vu+ 'ﬁ_ﬁ_vu_ ﬁ: ¢(xayat)a (3)
where superscripts + and — on u and S signify the corresponding subdomains, 7
indicates the normal direction pointing from Q= to O, and the jump values ¢ and
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1 are allowed to be temporally and spatially dependent to account for the most
general scenario.

The parabolic interface problem modeled by (1) - (3) plays important roles in
multiple physical and engineering applications. The conductive heat transfer pro-
cess over composite media is widely investigated through this model when the in-
terface conditions are homogeneous, ie., [u] = 0, and [fu,] = 0. Due to the
discontinuity of diffusion coefficient across the interface, the analytical solution of
the parabolic interface problem is not readily available even in the case of homo-
geneous interface jump conditions. Hence numerical approaches are in need for
such problems. However, standard numerical procedures cannot deliver accurate
solutions due to the assumption that solution is smooth over the whole domain.

Various specially designed numerical schemes with the jump conditions being in-
corporated into discretization have been introduced in the literature for solving par-
abolic interface problems. These include finite element methods and finite volume
methods based on body-fitted interface treatments [3, 8, 32, 33, 34], finite difference
methods based on Cartesian grids [2, 5, 6, 18, 19, 22, 17, 30, 40, 24, 36, 20], and
immersed finite element methods based on Cartesian meshes [25, 39]. For instance,
the immersed interface method (IIM) is one of the most successful finite difference
methods in solving parabolic interface problems [5, 6, 18, 19, 20]. By avoiding mesh
generation, generalized Taylor expansions are adopted to locally modify the finite
difference weights so that the accuracy loss across the interface can be recovered.

Time integration is also crucial to the numerical solution of parabolic interface
problems. Explicit time stepping would require a severe stability restriction with
the time step size At < Ch?/Bmaz, Where h is the spatial grid size and Bar =
maxzeqf(z). The implicit time integration is thus preferred in many applications
involving long-time integration for the steady state solution. However, in implicit
time stepping, a linear system, which involves all spatial degree of freedom N and
is obtained from discretizing a Helmholtz type equation, has to be solved in each
time step. With a generic iterative solver, the computational complexity could be
O(N?) in each time step. This leads to tremendous amount of computing resources,
especially when the parabolic interface problem is generalized to three dimensions.
This calls for the development of fast algorithms for solving such a linear system
with the complexity being O(N) or O(NlogN). In scientific computing, some
possible candidates with such efficiency could be the fast Fourier transform (FFT),
multigrid, or alternating directional implicit (ADI) methods. Nevertheless, the
FFT is not readily applicable to such parabolic interface problem due to the non-
constant coefficient of the reaction term in the Helmholtz equation. Therefore, ADI
and multigrid are two popular techniques for designing fast algorithms for parabolic
partial differential equations (PDEs).

The core philosophy of ADI methods [12, 11, 29] is to reduce a multidimen-
sional system from discretizing parabolic equation to a sequence of independent
one-dimensional (1D) sub-systems of tridiagonal structure, which can be solved ef-
ficiently with the Thomas algorithm [31]. Compared with generic iterative solvers,
ADI methods can be regarded as an exact solver due to the fact that computation
will be completed within a fixed number of steps. Recently, ADI schemes have been
developed to cope with parabolic interface problems with desired ADI efficiency
maintained. Li and Mayo [22] introduced the first ADI algorithm with help of the
IIM to correct local differences near interface when facing a special interface jump
with [8] = 0 across the interface. The further studies of such IIM scheme can be
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found in [26, 27]. Zhao [40] proposed the first ADI algorithm to tackle the gen-
eral jump conditions with [3] # 0, by adopting matched interface and boundary
(MIB) method [41, 42] for handling interfaces. A tensor product approach is applied
to decompose the jump conditions into Cartesian and tangential directions. The
Cartesian jump quantities can be used to correct 1D finite difference discretization,
while the tangential jump is approximated by using function values in the previous
time step. A modified Thomas algorithm is introduced to accomplish the classic
computational complexity O(N) of the ADI scheme. The same MIB-based philos-
ophy is further generalized to three dimensional parabolic interface problem with
a non-orthogonal local coordinate for a simpler implementation [36]. These MIB
based ADI schemes [40, 36] achieve second order accuracy in space, but attain only
a first order accuracy in time, due to tangential approximations. More recently, a
multiscale ADT algorithm [20] has been proposed with aid of the IIM for general in-
terface conditions. Two types of auxiliary variables on the interface are introduced
for the augmented system in order to incorporate the ADI framework. Second or-
der accuracy is fulfilled for both spatial and temporal discretization with a time
step size constraint At < C'h. Most recently, the ghost-fluid method has also been
combined with the ADI to solve parabolic interface problem with symmetric and
tridiagonal finite difference matrix obtained [23]. The metric of the algorithm lies
in its superior stability despite first order accuracy in space.

The multigrid method is another popular fast solver used in solving PDEs with
discontinuous coefficients. Based on structured or unstructured meshes, approaches
for constructing interpolation, smoothing operators and coarse gird points selection
would require special designs [7]. Algebraic multigrid (AMG) [28] selects coarse grid
points in a pure algebraic sense to define interpolation without interface geometry
and dimensionality needed in the construction. Yet it exploits the discontinuous
coefficients and geometry in the matrix-dependent interpolation. A great amount of
storage is usually needed for its coarse grid operator matrices generated by Galerkin
process. Recently, the AMG scheme has been successfully applied in the immersed
finite element method for solving both stationary and moving interface problems
[13]. Geometric multigrid method is the other class of multigrid methods, which
includes interface geometry in the process of discretization to the PDE with related
boundary and interface jump conditions. In [2], Adams and Li proposed a 2D
IIM multigrid method, which preserves maximum principle. Black box multigrid
interpolation is adopted away from the interface, while interpolation weights are
derived with help of Taylor expansion for the grid points adjacent to the interface.
Later on, an improved IIM based multigrid method [1] has been developed with
interpolation and restriction operators being modified such that coarse-grid matrices
are M-matrices. The number of V-cycles does not change with mesh refinement,
and increases slightly with the ratio of discontinuous coefficients growing. In [35],
a multigrid method is proposed, which can maintain a uniform convergence with
respect to mesh size and the high interface jump ratio. It can be extended to
three dimensions, and can solve multiple interface problem efficiently. Besides, it
can avoid the issue of large storage of coarse-grid matrix. Extending the multigrid
approach for solving continuous coefficient boundary value problem in [9], Coco
further designed a multigrid method for solving discontinuous coefficient interface
problem [10], which can even be further generalized to matrix coefficient problems.
Its multigrid efficiency is guaranteed with the convergence factor not depending on
the coefficient ratio. In spite of the great success achieved by the aforementioned
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multigrid methods, a new multigrid method has to be designed again when a new
interface algorithm is under consideration. Because each interface algorithm has
a different procedure to capture boundary or interface conditions, sophisticated
treatments are demanded to define interpolation with knowledge of geometry from
the interface and to define restriction and coarse grid operators.

In this paper, we propose a new geometric multigrid method based on the aug-
mented matched interface and boundary (AMIB) method for solving parabolic in-
terface problems. The AMIB method was originally designed to solve elliptic in-
terface problems [14, 15, 16]. With a FFT acceleration, the AMIB method can
deliver fourth order accuracy in treating both interfaces [16] and boundaries [15].
Nevertheless, the AMIB method has never been coupled with a multigrid method
before. In this study, due to the augmented approach adopted, the finite differ-
ence interface treatment and the multigrid solution procedure can be decoupled
in the proposed AMIB method. This considerably simplifies the interpolation and
restriction process for the coarse grid operators in the multigrid method. Hence
standard multigrid components can be applied in such augmented framework with
the advantages including that storage for coarse grid matrix is avoided and the
implementation is fairly simple. Second order corrected central differences are ap-
plied for spatial accuracy to compensate accuracy loss across the interface, and the
Crank-Nicolson scheme is used for temporal discretization. This leads to second
order accuracy in both space and time, while the multigrid approach considerably
accelerates the computational speed.

The rest of the paper is organized as follows. Section 2 focuses on discussion of
the several key aspects of the proposed efficient algorithm. In section 3, numerical
experiments are implemented to justify the effectiveness of our method in solving
parabolic interface problems. Comparisons to other methods are carried out to
show the efficiency of our method. A summary and acknowledgment are included
in the end of the paper.

2. Theory and algorithm. In this work, we focus on the piecewise constant
coefficient parabolic interface problem. We first rewrite the original problem (1)
into the following form

%%:Au—l—%, in QtuQ\T. (4)
Subject to the same initial, boundary, and interface conditions, the solution to
(4) is equivalent to that of (1). We partition the given rectangular domain Q =
[a,b] x [¢,d] into to n, and n, equally spaced intervals in z— and y— directions
respectively. The mesh size in each direction can then be defined as h, = (b—a)/n,
and h, = (d — ¢)/n,. For simplicity, we assume that h, = h, = h. The grid nodes
are hence defined as

i =a+ih, yy=c+jh, it =0,--- ,ng, j=0,--- ,ny.
Assume that the interface I' is represented by a level set function
I'={(2,y),¢(z,y) = 0},

with ¢(z,y) > 0in Q7 and ¢(z,y) < 0 in Q7. Two functions are defined at each
grid point
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min

Pij :min{%‘—l,j,%:,j,<Pz'+1,j,30i,j—17<,0¢,j+1},

w??a’” = max{p;_1,j, Pij Pit+1,55Pij—1, 901'7j+1}~
The subscript (i,7) indicates the function value of ¢ at (x;,y;). It is similarly
defined for other variables. If ¢"/"¢"®* > 0, then the grid point (z;,y;) is called a
regular point, otherwise an irregular point.

Moreover, a uniform time increment At is adopted for temporal discretization.
Let t,, = n- /At represent the nth time step in the temporal discretization. For ease
of exposition, we use notation u;’; to denote the function value on grid (z;,y;) at
time t,,.

2.1. Temporal discretization. For temporal discretization, the Crank-Nicolson
scheme is adopted

n+1 n
W) B A+ S AT n n+1 .
Bij Ot gty T Bt 2[31-,3-( AR (5)

which has the equivalent form below after reorganizing the terms in (5)

2 n+1 n+1l 2 n n 1 n n+1
Boatts TR = gyt A+ g Ui+ - (6)

The above Crank-Nicolson scheme admits a second order temporal truncation er-
ror. Note that the Laplacian terms at time step ¢t = ¢! and ¢t = t" need spatial
discretization such that the time stepping process (6) can proceed for the discrete
solutions at certain time instant. The spatial discretization details are fully demon-
strated in following sections.

2.2. Spatial discretization. Ignoring the time dependence, we concern ourselves
with second order spatial discretization to the Laplacian operator

0%u  0%u
Au = @ + 87y2

We may focus the discussion on g%‘ due to the tensor-product decomposition to

be employed for discretizing the Laplacian operator. The standard second order
central difference can be utilized to approximate the partial derivative u,, with a
truncation error O(h?):

u(wig) — 2u(z) +u(xioq) 1

The above formulation (7) is applicable to the case of regular points, while ap-
proximation in irregular points needs different treatment due to the fact that func-
tion loses regularity across the interface. Corrected differences are employed below
[37]:

Jump-corrected difference. Suppose u € C*[z; — h,a) N C*(a, 2541 + h] and
x; € Q7 and ;.1 € QF, where derivatives extend continuously up to a. The
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following approximations hold to O(h?) when K = 3 :

K
w(ir1) — 2u(x;) +ulz_q) 1 (h+)F
uwz(xz) ~ + h2 - ﬁ Z k! [u(k)]’ (8)
k=0
K
w(zipe) — 2u(ip1) + ula;) 1 (ff)’C
Ugy (Tig1) & = 12 + + e Z il [u(k)]a (9)
k=0
where h~ = x;—a, ht = x;,1 —a with z; < o < 2;41, and [u®], = lim+ u®) () —
T—rQ
lim u®(z).
r—o

The global regularity for v will be assumed to be piecewise C* continuous, as
required locally for jump-corrected differences. Note that the leading error term in
(7) involves the fourth order derivative uzzqpr. So C* continuity is needed in each
subdomain for maintaining the second order accuracy everywhere, except near the
interface. In corrected differences, the Cartesian derivative jumps of up to order
K = 2 is sufficient to guarantee a global second order accuracy despite being first
order locally [14].

The corrected differences in Eqns.(8) and (9) will reduce to Eq. (7) with the
introduced jump terms vanishing if no interface is met. Such jump quantities are
compensating for the function discontinuity across the interface. Since the derivative
jumps in the correction terms are not analytically available, numerical approxima-
tions are needed for the corrected differences to be applied at irregular points. In
following subsection, a systematical procedure is discussed for reconstruction of the
derivative jumps with aid of fictitious values generated by the matched interface
and boundary (MIB) method [42].

2.3. Reconstructing the Cartesian derivative jumps. The derivative jumps
in the above corrected differences are defined as
oFu _ g 0Fu . oFu
(gtlle=e = 1 Br — 100 Bar
where £ = 0,1,2 indicates the order of derivative. We will construct an effective
numerical approximation to such derivative jumps except for the zeroth order one,
which is known in the interface condition (2). It is natural to approximate the
one-side derivative jumps in Eq.(10) using polynomials from each side. Since the
derivative order in Eq.(10) is up to two, a polynomial of degree two on each side of
the interface is sufficient to guarantee the local first order accuracy in the corrected
difference with each order derivative obtained via differentiation on the polynomial.
For the sake of accuracy and stability, it is better to approximate each one-sided
derivative limit with central or pseudo-central difference. As shown in Fig.1, if
one layer of fictitious values is available on each side of the interface z = «, we can
combine those with two real function values on the other side of the interface to yield
the desired two Lagrange polynomials. The derivative jumps can be approximated
as below:

(10)

aku R 2 2 R
[Hpxlla=a = (Wf i+ > why i) — O Wi gy sty + Wi sl ),

=1 =1
(11)
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Ui+2,5
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Ui—1,5
r=a«

Figure 1. Black dots denote real function values, while empty circles
indicate fictitious values. They are used in the polynomials for approxi-
mating derivative jump across the interface at x = a.

where the linear combinations in the two parenthesis denote the derivatives of the
two constructed Lagrange polynomials for approximating one-sided derivative limits
at r = a.

It is possible that only one real function value is available on one side of the
interface due to sharp topology change of the interface. To deal with such a corner
case [14], a fictitious value is employed at where the needed real value is missing.
Just consider the derivative jumps at * = a9 in the two scenarios shown in Fig.2.
The fictitious value at x = x;_1 is used for the case in the right chart in comparison
with the case in the left chart where the real value at x = x;_1 is adopted.

Likewise, the discretization for the y—direction derivative jump can be formulated
when the interface intersects with the x grid line. To apply the approximation
(11), we need to construct fictitious values at all irregular points. In the following
subsection, the MIB method is employed to generate the needed fictitious values.

Figure 2. Derivative jump approximation in two scenarios. Empty
circles denote the fictitious values at the grid points, while black dots
indicate real function values.

2.4. Fictitious values formulation. The jump conditions (2) and (3) are given
on the interface I'.  One more interface condition can be analytically derived by
differentiating Eq. (2) along the tangential direction 7 of the interface as below,

[ur] = uf —uz = p(z,y). (12)

Consider a point (z*,y*) on the interface. Define 0 as the angle between positive

x—direction and normal direction. Then the tangential and normal direction could
be expressed as T = (—sinf, cosd) and 7 = (cos 6, sin §), respectively. See Fig. 3 in
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i+2.5)  (i+37)

Figure 3. Consider the case where the interface intersects y = y; at
(2o, ;). At the irregular points P (3,7) and P2(i + 1, 7), fictitious values
(in box) can be constructed. Here 6 is the angle between positive x—
direction and the normal vector 7.

case that (z*,y*) is located on a y grid line. At (z*,y*), the three known interface
conditions can be reinterpreted in the Cartesian form [42],

[ul = u™ —u™ = ¢(a",y"), (13)
[ur] = (—uf sin @ + w} cos ) — (—uy sin6 + u, cosf) = p(z*, y*), (14)
[Bun] = 87 (uy cos 0 +uf sinf) — 7 (u, cosd +u, sinf) = p(z*,y"). (15)

In this way, jump conditions from tangential or normal direction are transformed
into x—or y—direction involving four partial derivatives u;,u, , u?j‘, and u, . The
following formulations (16) or (17) can be obtained by eliminating u, or u; from
the four quantities.

If w, is eliminated, the following equations can be derived

[u]l =u™ —u™, [Bu,] — B~ tanbfu.] = CFul — Cruy + Cfuf,

(16)

where C;f = % cosf + 3~ tanfsinf, C,; = [~ cosf + [~ tanfsinf and C =
BT sinf — B~ sinb.
If u; is removed, we can obtain that

[u] = ut —u™, [Bun] + B~ cotO[u,] = Dju} — Dyu; +Diuf,  (17)

where Df = (61 —f7)cos0, D, = 3~ cosf cot 0+ sinf and D, = 3~ (cos  cot 6
+ sin 6).

Eqns. (16) and (17) allow us to reduce the 2D jump conditions to 1D ones
along Cartesian direction provided that u; and u; can be determined, respectively.
Suppose the interface intersects with y = y; at (z,,y;) as shown in Fig. 3. To
generate a pair of fictitious values 4; ; and w;41,; at points P; and P, on each side
of the interface, discretization is carried out on Eqn.(16) as below,

[u] =W, Ut —W,; U~ (18)
[Bun] — B~ tan Ou,] =CWtUT —C, W, U™ + C;P+UO, (19)
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with the following vector representations

Ut = (5, Uig1,5, Uiva,s)"
U™ = (Uifl,jvui,jvﬁiJrl,j)T

+ (ot +
{ Wy = (wo,i7w0,i+17w0,i+2)
Wy = (wo,i—l’wo,i7w0,i+l)

)

+ _ (+ + +
{ Wi = (wl,i+2’w1,i+37w1,i+4)
Wy = (wl,i—17w1,i7w1,i+1)

{ U, = (uo,jflauo,jauo,jJrl)T

P* = (pl ;0P 5 P1g40)

Here UT, U~ indicate the involved function and fictitious values and the four vectors
WO+ Wy ,Wfr W1 represent the Lagrange interpolation weights when discretizing
(16) along x—direction. Note that fictitious values 4; ; and 4;41,; in Ut and U~
participate in the process of approximation to the z—direction interpolation. Anal-
ogously, U, and P are the needed auxiliary function values and corresponding
weights to approximate u;’. The superscripts — and + in the above vector nota-
tions or the elements in each vector signify the Q= and Q% domain. Beside, the
subscript 0 or 1 indicates the zeroth or first order derivative. The index i or its
variance tells the information located at « = x;. Note that three auxiliary function
values in U, are at points (%o, ¥;-1), (Zo, Y5 ):(Z0, Yj+1), see Fig 3. Additionally, each
of these three auxiliary values are interpolated or extrapolated by three function
values in QF. For example, in Fig. 3, u, j+1 is interpolated by function values
Ui 41, Wit1,j+1 and wiqo j1. Similarly, ue j, 4o j—1 Will be extrapolated by three
function values from their right side in the Q* domain.

With the function values in U, appropriately approximated, (18) and (19) pro-
duce fictitious values 4; ; and @41 at points (x;,y;) and (x;41,y;) represented
as a linear combination of surrounding points near the interface and three jump
conditions at interface point (2*,y*). For instance, the representation of 4, ; can
take a general form as

U5 = Z Wi gur,g + Wolu] + Wilu,] + WaSuy,]

(z1,y5)€Ss;

= Z Wi, gur, g+ Woo(x™, y*) + Wip(a™,y*) + Watp(z*,y%),  (20)

(z1,y5)€ES:,;

where S; ; represents a set of surrounding nodes involved in (18) and (19).

In this manner, the needed two layers of fictitious values can be generated along
x—direction by enforcing the jump conditions (16) or along y—direction by enforcing
(17). Interested readers are referred to [42] for more details.

Remark 1. The above MIB formulation utilizes extrapolations in QT only, i.e.,
u; and u;} in (16) and (17) are perpendicularly approximated by using auxiliary
values, and each auxiliary value will be extrapolated by using function values in
Q*. Recall that Eqs.(16) and (17) are derived after u, or u, being eliminated from
Eqgs.(13) - (15). On the other hand, if we remove w,} or u;} from Eqns (13) - (15),
we can have another set of formulations involving u, or u,. Numerically, u, or
u, needs to be extrapolated by only using function values in Q~. We call the first
approach as MIB-PLUS and second one as MIB-MINUS in terms of function values

used from QF or Q= in the extrapolation process.
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Remark 2. It is found in our experiments that the accuracy of derivative jump
reconstruction in Eq. (11) could be affected by the fictitious value generated by MIB-
PLUS or MIB-MINUS depending on 87 and $~. When ST > 37, the accuracy
could be better if MIB-PLUS is used. Similarly, when 8T < 87, the accuracy
could be better if MIB-MINUS is adopted. Nevertheless, for efficiency concern, we
will use fictitious values obtained by MIB-PLUS in the case when 8~ > 8%, while
MIB-MINUS for the case with 3~ < 8% [16]. This strategy can reduce the iteration
number in the overall algorithm.

2.5. Formulation of augmented system. Great details have been given to demon-
strate how corrected differences are used to approximate the Laplacian operator.
The right side of the Crank-Nicolson scheme (6) can be easily determined once the
information of solution u", the interface conditions ¢, p,1¢ at current step t”, and
the source term f at t" and t"*! are gathered. Especially, corrected differences
with the jump approximation method (11) are utilized to deal with approximation
at irregular points on both sides of the time-stepping scheme (6). However, it will
be inefficient to apply iterative algorithms to solve the linear system underlying (6)
at t"*1. It is noted that the standard second order central difference matrix struc-
ture with some additional diagonal entries is obtained if the corrected difference is
neglected. Due to such special matrix structure, a multigrid-based fast solver is es-
tablished to fulfill the fast solution of the parabolic interface problem. Prior to the
introduction of fast multigrid solver, we need to introduce the auxiliary variables in
order to take advantage of the special matrix structure.

2.5.1. Auziliary variables. The right hand side of the time-stepping scheme (6) can
be explicitly calculated with the known information on boundary or interface con-
ditions, while the left hand side of (6) needs efficient algorithm design. For this
purpose, we introduce auxiliary variables to form an augmented system.

With the general formulation of fictitious values in (20), the approximation (11)
can be well defined. At each intersection point between the interface I' and z—or
y—grid line, auxiliary variables [uy], [uge] Or [uy], [uy,] are introduced. Then ap-
proximation (11) can be reformulated as

k
CyU + [%] = Oy, (21)
where C}, is the corresponding weight coefficient, U signifies the needed function val-
ues in (11), and Py, is from the known quantities of the fictitious values in (11). The
subscript k indicates the jump of kth derivative at time t"*!. Then the derivative
jumps at all intersecting points can contribute a general matrix-vector form

CU+IQ =9, (22)

where C' stands for the weight coefficients as in (21), @ denotes all the auxiliary
variables.

2.5.2. Augmented system. Let U; ; indicate the discrete solution while u(z;,y;) is
continuous solution at (z;,y;). Based on the corrected difference analysis for spatial
discretization, the scheme (6) is expanded at all interior nodes as

1 n n
5”_( ”H + fi'5)s

for 1<i<ng—1, 1<j<n,—1, (23)

DhU;jjl - LhU;jjl - c;fjl = DU} + LU + CF; +
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where C; ; is the correction term, and L,U; ; is the standard five points central
difference scheme

Uit1,j +Uicr,j + Uij1 + Ui j—1 — 4Ui

LhUi,j = h2

(24)

2
DhUz',j :

=—U; ;. 25
Bi,jAt 6, ( )

Note that the subscript (7, §) indicates the gird node (z;,y;), and the superscript n
and n + 1 imply the time ¢" and t"*!, respectively. The degree of freedom of this
system is N = (n, + 1)(n, + 1). The correction term C; ; only exists at irregular
points but vanishes at regular points. The discretization (23) gives rise to the
matrix-vector form

DU + AU™! + BQ"t! = DU™ — AU™ — BQ" + F™ (26)

where D is a matrix with non-zero entries only along the diagonal, Aisa N -by-N
non-symmetric and diagonally dominant matrix, the unknown U is for solution at
all grid nodes and @ is for all the needed auxiliary variables. The diagonal entries of
matrix D are non-constant due to the different values of 5 in different subdomain.
As the right hand side of (26) can be determined in each time step, we can denote
the right hand side of the above system as F. The above system can be further
simplified as

AU + BQ =F, (27)

after we combine the coefficient matrix D and A into A4, ie., A = D + A, and
ignore the superscript n+ 1. Both U and Q are to be solved at time t"*!. Supposed
Q is already determined, then the time stepping process continues by updating
right side U™ with obtained solution U"*! in (26). The Dirichlet boundary condi-
tion is imposed in the vector F' with some rows of matrix A composed by vector
(0,0,---,0,1,0,---,0), i.e., only the diagonal element is one while other entries are
zero. The total number of auxiliary variables ), denoted as M here, is double of
that of all intersection points, while the latter is usually proportional to n, or n,. In
other words, M is usually one-dimensional smaller than N = (n, +1)(n, +1). The
matrix B with dimension N-by-M contains coefficients from correction terms. In
particular, matrix B is a sparse matrix, since the correction terms only have impact
on the irregular points which account for a small portion in the whole computation
grid points.

We need to determine @ first to solve for U in (27). It is necessary to combine
(27) and (22) to form augmented equation system

KW =R, (28)

(4 7)o (5). mne(5)

Note that the dimensions of matrix C' and I match those of A and B. Here C is a
M-by-N sparse matrix, and I is a M-by-M identity matrix.

The matrix structure of A allows for fast inversion with aid of multigrid method,
which will be discussed later. Bearing this in mind, we will formulate two efficient
solvers for the parabolic interface problem by using the following Schur complement
strategy.

where
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2.5.3. Schur complement. In each time step, we aim at solving U from
AU = F — BQ, (29)

after we determine (, and move all the known quantities to right hand side. Then
the solution U could be quickly obtained by applying the multigrid solver on the
above equation thanks to the matrix structure of A. Such step is preceded by the
determination of @ from the Schur complement

(I-CA™'B) Q=0 CA'F, (30)

which is obtained by eliminating U from the augmented system (28).

Note that the linear system (30) for @ has a much smaller degree of freedom
than U, i.e. M. We propose two approaches to solve @ from Eq. (30) in terms of
iterative solver or the LU decomposition on the coefficient matrix of the left hand
side in Eq.(30). The following steps are used to illustrate the procedure. One is by
iterative algorithm of GMRES method(GMRES approach), while the other is by
LU decomposition(LU approach).

e GMRES approach.

1. As a linear system, the right hand side RHS=® — CA~'F is determined
by applying multigrid solver on A~'F and some arithmetic operations.

2. For the left hand side(LHS), we may consider an iteration approach by
the GMRES method. In this approach, the matrix vector product of
(I - CA~1B)Q is fulfilled in a couple of steps. Due to its equivalence to
IQ — CA7'BQ, a multigird solver is carried out on the product of BQ,
i.e., A71(BQ). Then it is followed by some more arithmetic operations on
IQ — CA~Y(BQ).

3. For the first time step ¢t = 0, an initial guess Q@ = (0,0,---,0)7 is used
to start the GMRES iteration. For the rest time steps, the initial guess
of () is taken as the computed ) from the previous time step. Either
the maximal iteration number 5000 or error tolerance equal to 10710
terminates the GMRES iteration. The termination criteria are flexible
according to actual computational needs.

o LU approach.

1. The first step is the same as that in the above GMRES approach.

2. For the left hand side(LHS), we will explicitly construct the matrix I —
CA~'B, where the inverse of A, i.e. A™!, should not be formed, but
is applied on the columns of matrix B. Then the explicit matrix is de-
composed into the matrix product of X and Y from a LU decomposition
solver. Such matrix construction and decomposition need to conducted
only once before the time stepping.

3. The solution @ in each time step can be simply obtained via the LU
forward and backward substitutions.

Remark 3. The efficiency of GMRES approach depends on the iteration number
for the GMRES iteration process. Note that each iteration involves one multigrid
inversion with a complexity O(N) = C3N for some constant Cy. Fortunately, the
iteration is for solving (30), whose dimension M < N. Generally, for any itera-
tion solver, the better conditioned the iteration matrix is, the smaller the iteration
number is. The selection of MIB-PLUS or MIB-MINUS mentioned in Remark 2
provides a good conditioning strategy. This makes the iteration number increase
moderately as the mesh is refined.
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Remark 4. The strategy of LU approach is different from GMRES approach in the
sense that the Schur complement matrix is formed with multigrid algorithm applied
for each column of matrix B. The more grid lines intersect the interface, the more
columns matrix B has. The computing cost is mainly contributed by the multigrid
inversion on all the columns, before the time stepping. In the time-stepping process,
only the forward and backward substitution of LU are applied to solve for auxiliary
variable, and one multigrid inversion is deployed on (29) for solution of u. Moreover,
the LU approach is not impacted by the conditioner number of the linear system as
it does for GMRES approach, since the LU decomposition is a direct rather than
an iterative solver.

Remark 5. The complexities of the two approaches are in the same magnitude.
As it is second order accurate for both temporal and spatial discretization, it is
reasonable to set time increment At proportional to spatial partition size h to ensure
the overall second order convergence. Suppose the total degree of freedom N = n?,
where n is the grid number in each direction. The intersection number M is hence
equal to Cyn for some constant Cy, and the temporal evolution number N; = C3n
for another constant C3. We may roughly have an estimate of the complexities of

the two approaches. The complexity of the LU approach is
2
O(N) x M +O(M?) x Ny + gM2
2
=CyNM + C1 M? N, + gM2
2
:C’ngn2an + Con?Con + gCS’nQ
2
=C1C3C3n® + C2Con® + 5an“‘
_ 22y 3
—00(000103 + Cy + 3CO)TL ,

where the first and second term in the first equality indicates the total sum of
matrix generation cost arising from multigrid solver and the cost of multigrid for
inversion deployed on (29) and right side of (30), and the LU forward and backward
substitution cost in all time evolution steps. Besides, the last term in the first
equality denotes the LU decomposition for the generated matrix in the first time
stepping.

The computational complexity of the GMRES approach is

O(N) X 04 X Nt = CQTL204C3TL = 02030477/3 = 03(0204)713,

where C4 indicates the sum of total times multigrid solver is call in the GMRES
subroutine, and multigrid for inversion deployed on (29) and right side of (30).

The computational complexities of the two approaches are all of O(n?). Note
that the number Cy is a constant under the assumption that the iteration number of
GMRES solver does not depend on mesh size. But in the practical implementation
of our algorithm, the iteration number depends on the mesh size weakly. This can
be seen in the numerical examples of the latter section. This makes AMIB-LU
slightly more efficient than AMIB-GMRES when achieving second order accurate
solution.

Remark 6. When an explicit finite difference method is employed to solve parabolic
PDEs, a stability condition with At < Ch?/B,,4. has to be satisfied, where B4, =
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max;coB(x). This means that one has to take N; = O(n?) to ensure stability. It
is reasonable to assume the complexity in each time step of this explicit scheme
to be on the order of O(n?), since there are n? degree of freedom. Thus, the
overall complexity of explicit finite difference solution of the 2D parabolic interface
problems is about O(n*). This means that the proposed AMIB methods could be
asymptotically faster than the explicit schemes.

2.5.4. Multigrid algorithm. In the preceding section, a multigrid approach has been
assumed in the discussion of building efficient algorithm. In this section, details on
this solver are provided.

The multigrid approach is an efficient algebraic algorithm for solving a linear
System

AU =B (31)

with known matrix A and vector B. Recall in our study, A has a special matrix
structure: A = D+ A. Thus, Eq. (31) can be regarded as obtaining from a dis-
cretization to negative of Laplacian operator plus solution with variable coefficient
as below:

—Au+ a(z,y)u = b(x,y), (32)

where the domain and its partition are the same as that for the problem in this
work, the discrete values of a(x,y) on the given partition are the same as diagonal
values of D, U is the discrete solution to u in (32), and function b has its discrete
data equal to B at the interior grid nodes and for boundary conditions.

To be more clear, at the interior node,

@($i7yj) :D((J - 1)7130 + 1, (] - 1)nI + i)?
for1<i<n,—1,and 1 <j <n,—1, while at the grid node on boundary of €2,
b(wi,y;) =B((7 — Vng + 4, (4 — Dng + 1), (33)

for (4,7) such that (x;,y,) N IQ # 0.
The discrete problem can then be reformulated as below according to the discrete
data,

—LpyUp + DU, = by, in Qy, (34)
BhUh = bh, on th, (35)

where Lj, and Dy, are the discrete versions of Laplacian operator, and the coefficient
function a(z,y) as defined in last section, and By, is the boundary operator. The
Ly, and Dy, in (34) share the same stencil structure as in (24) and (25). When the
mesh is refined by doubling h to H, the value of by will be sampled directly on the
refined interior node, but the boundary value of by is collected in the refined grid
nodes on the boundary in the same way. The corresponding coefficient matrix for
the discrete governing equation (34) on coarse mesh H is a submatrix of that for
mesh h.

This makes it possible for applying multigrid method to solve the linear system
(31) efficiently. Once Uy, is determined, the solution of (31) is set as U = Uy,

The main idea of multigrid method lies in reducing the high frequency compo-
nents of solution error on fine mesh, and that the low frequency errors are solved on
coarse grids. Due to the fact that low frequency components of the errors can not



AMIB METHOD FOR PARABOLIC INTERFACE PROBLEM 3155

be effectively reduced, the residual is restricted to coarser grids such that the low
frequency errors are solved therein. Such determined errors are then interpolated
onto fine meshes to provide some correction to the already obtained solution on fine
meshes. Over the process, relaxation is needed on fine mesh to improve the solution
accuracy, while restriction operator is imposed from fine mesh to coarse mesh and
interpolation is needed from coarse mesh to fine mesh. Such process is iterated until
the solution meets certain accuracy.

The relaxation is used to reduce errors in two aspects. One is for smoothing the
high frequency component on the fine mesh. The other is used after the obtained
errors are interpolated to add correction on solution on fine mesh. In this case,
the relaxation is to reduce the error introduced from interpolation. In this work,
we adopt the red-black Gauss-Seidal smoother as the relaxation scheme. The two-
grid correction scheme as the simplest multigrid adopts only two level of meshes to
achieve the solution correction via iteration between restriction and interpolation.
We use such two-grid correction scheme to illustrate the way we apply multigrid
scheme to obtain the solution of the linear system (31).

Algorithm 1 Two-grid correction scheme

1: The initial guess for Uy, is set as 0.

2: Relax Eq.(34) v1 times on the fine grid.

3: Compute the residual on fine grid, r,, = b, + LU — DpUp,.

4: for Lo error of residual r,, > certain tolerance do

5: Restrict the residual to coarse grid ry = Rr;, with the restriction operator
RhH, where H = 2h.

6: Exactly solve for the solution ey of the residual problem on coarse grid

—Lygeg + Dyeyg =rgy. (36)

: Interpolate the correction to fine grid e, = [ﬁ,eH.
8: Apply the correction to get a better approximation Uy, := Uy, + ep,.
9: Relax the Eq.(34) vy times on the fine grid.
10: Compute the residual on fine grid, r,, = by, + LpUp — Dy Uy,.
11: end for

The above process continues until convergence. In our multigrid approach, we
generalize the above process to more grid levels to avoid the exact correction solution
for Eq.(36) in case that the cost is still very high on that coarse grid. This promotes
the necessity of even coarser grids for correction solutions. The above procedure
demonstrates the two-grid correction scheme using V-cycle. In our algorithm, we
deploy V-cycle for the multigrid solver rather than the full multigrid approach since
V-cycle tends to be more efficient in our practical implementation.

Restriction and interpolation are two needed transfer operators in the correction
procedure. In our implementation, it is sufficient to adopt the following standard
full-weighting stencil for restriction,

NSRS )
— N =
—~
w
\]
N—
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(i—1,7+1) G741 (i 41,5 +1)
(i—1,7) (i,5) (i+1,5)
(i—1,5-1) (i,j—1) (i+1,5-1)

Figure 4. The needed nine points on fine mesh for restriction or inter-
polation in the multigrid approach.

and the following standard interpolation scheme
Jr 2
m=>-124 21 . (38)
Y121
H
The subscript A and superscript H in RhH indicate restriction from fine mesh of mesh
size h to coarse mesh H, where H = 2h. As shown in Fig.4, the restricted function
value at (7, j) on coarse mesh comes from the nine function values at the highlighted
nine grid points on fine mesh with the corresponding weights in matrix Rf . On the
other hand, the subscript H and superscript h in % indicate interpolation from
coarse mesh H to fine mesh of mesh size h, where H = 2h. Through weight matrix
Il | function value at (i, j) contributes to nine interpolated function values at the
nine grid points shown in Fig.4. To be clear, the value at (4,j) on coarse mesh is
multiplied respectively by the nine weights in matrix I} to give a contribution to
the to-be-determined values at the nine grid points on fine mesh.

For the practical implementation of our multigrid algorithm for problem (34)(35),
we set both v; and vs equal to 2. For the exact solution on the coarsest grid, we use
biconjugate gradient iterative solver [31]. The iteration stopping criteria is set as
error tolerance equal to 10~'°, or maximal iteration number equal to 5000. Besides,
the multigrid stopping criteria is the residual Lo error less than 10719 We may
use number of grid levels flexibly for the multigrid algorithm based on the mesh
refinement.

3. Numerical experiments. In this section, numerical experiments are carried
out to demonstrate the accuracy, efficiency and stability of the proposed two AMIB
algorithms for solving parabolic interface problems. For sake of notation, we name
the AMIB method coupled with the GMRES approach on Schur complement as
AMIB-GMRES, while the AMIB method associated with LU decomposition is called
as AMIB-LU. For comparison purpose, the standard MIB method [42] with Crank-
Nicolson scheme for time-stepping is also implemented.

For simplicity, a square domain with uniform number of partitions in each di-
rection is assumed. We consider the number as n, = z, in each direction. Time
integration will be carried out from ¢ = 0 until a stopping time ¢ = T with n;
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steps and At = T'/n;. The numerical accuracy and convergence will be tested by
comparing the numerical solutions with exact solutions under the L, and Ly norm.

The iteration solver used in MIB method is biconjugate gradient iterative solver
[31]. The maximal iteration number is 5000, and the tolerance error is set as 10710.
The number of mesh levels in the multigrid algorithm for AMIB is chosen as 4 for
ng, = 16, as 5 for n, = 32, as 6 for n, = 64, and as 7 for all n, > 64. For multigrid
algorithm application, we have to set n, to be 2* for a positive integer k.

All the experiments were carried out on MacBook Pro with 8.00 RAM and Intel
2.3 GHz Intel Core i5.

3.1. Numerical accuracy. Example 1. In this example, we consider a parabolic

problem on a square domain [—~%, Z] x [~%, T] with a circular interface defined by

373
r2 =2 4+y° = i. The exact solution to this problem is

: oy <o.
u(, ):{ sin(t) + e , 7 <0.5,

sin(t) + e*T¥,  otherwise, (39)

with the diffusion coefficients

g1 r<os
| 10, otherwise.

Here we call 3 as 8 when it is outside of I', and 8~ when it is inside of the interface
I'. The interface jump conditions on an interface point (x,y) = (5 cos(6), 1 sin(6))
can be derived as below:

_ %(COS(9)+Sin(9)) 7 7%(005(9)+sin(9))
[u] =e e

[6un] :,BJF (COS(G)e%(cos(())Jrsin(())) + Sin(g)eé(cos(ﬁ)Jrsin(é‘)))
+ 6—(COS(Q)e—%(cos(9)+sin(9)) =+ Sin(a)e—%(cos(Q)-i-sin(Q)))

[ur] =BT (sin(g)ez (5D +sin(@) _ cog(g)ez(cos(@)+sin(0))
4 5*(Sin(e)ef%(Cos(0)+sin(0)) _ COS(0)€7%(COS(Q)+Sin(9)))

It follows the same principle in below notations. The source term f(z,y) is
related to the above designated solution,

| (cos(t) — 2B sin(t))e *"¥, r <0.5,
floy) = { (cos(t) — 28T sin(t))e® ¥,  otherwise.

The initial condition and boundary conditions can be easily determined by the ana-
lytical solutions. Beside, we may observe that both the zeroth and first order jump
conditions on the interface are time-independent. To test spatial convergence rate,
we consider the fixed stopping time at T' = 1 with the time increment At = 1073 be-
ing small enough such that temporal error will not interfere with the examination
of the spatial convergence. Table 1 clearly reveals that the spatial discretization
reaches the second order convergence in space.

On the other hand, the temporal convergence needs to be tested. For such
concern, the spatial partition in each direction is set to be n, = 512, and various
time steps are deployed. The results in Table 2 indicates that the second order
temporal convergence can be monitored from the second row to the last second
row. Such second order convergence starts to occur from At = 0.25. The total
CPU time of each time evolution methods is listed in the last column in Table 2,
where we can compare the efficiency between these method. It can be observed



3158 HONGSONG FENG AND SHAN ZHAO

that if the number of time steps is small, AMIB-GMRES is superior than AMIB-
LU. However, in the long run, AMIB-LU outperforms both AMIB-GMRES and
MIB methods. Take the case of n; = 128 for instance, CPU time of MIB is about
12 times larger than that of AMIB-LU. Similar results can also be found in the
last row of Table 1 of spatial convergence test when partition number is 512 in
each direction. The number of time evolution steps is 1000, leads to CPU cost
of MIB being 14 times larger than that of AMIB-LU. The inefficiency of MIB or
other interface algorithms implemented with iterative solvers for parabolic interface
problems leads to the demand for the development of efficient solvers.

Table 1. Spatial convergence for example 1.

[na, ny] AMIB-GMRES
Lo Lo CPU time(s)
Error Order Error Order
[32,32] 2.08E-4 - 8.82E-4 - 0.94
[64, 64] 3.21E-5 2.70 1.69E-4 2.38 5.48
[128,128] | 7.52E-6 2.09 3.13E-5 2.43 26.6
[256,256] | 1.94E-6 1.95 9.07E-6 1.79 175
[512,512] | 5.66E-7 1.95 2.97E-6 1.79 1143
AMIB-LU
Lo Lo
Error Order Error Order
[32,32] 2.08E-4 - 8.82E-4 - 0.30
[64, 64] 3.19E-5 2.70 1.68E-4 2.38 1.49
[128,128] | 7.52E-6 2.09 3.13E-5 2.43 6.50
[256,256] | 1.94E-6 1.95 9.08E-6 1.79 29.8
[512,512] | 5.71E-7 1.95 2.99E-6 1.79 200
MIB
Lo Loo
Error Order Error Order
[32,32] 2.07E-4 - 8.75E-4 - 0.62
(64, 64] 3.19E-5 2.70 1.68E-4 2.38 4.76
[128, 128] 7.50E-6 2.08 3.13E-5 2.42 35.4
[256,256] | 1.94E-6 1.94 9.09E-6 1.79 336
[512,512] | 5.66E-7 1.95 2.97E-6 1.79 2935

Example 2. In this example, we consider a parabolic problem on a square domain
[—Z, 2] x [-Z, 2] with a circular interface defined by r? := z? +y? = 1. The exact
solution to this problem is

sin(kz) cos(ky) cos(t), r < 0.5,

cos(kx) sin(ky) cos(t), otherwise, (40)

The source terms can be correspondingly determined,

(2k2B~ cos(t) — sin(t)) sin(kx) cos(ky), 7 < 0.5,
fly) = { (2257 cos(t) — sin(t)) cos(kx) Sin(kZL otherwise.

The zeroth and first order interface can be found to be time and space dependent,

representing the most general jump conditions. In this example, we consider k = 2.
It is also reasonable to approximate the equation (4) with

uwtt —ul, 1 1 1

G B A— YL —+ 7Au7,l‘?‘1 + —

ﬂi’jAt 2 J 2 bJ ﬁi’j

with the difference to Eq.(5) on the approximation to f at time ¢ = ¢, + 0.5At

n 1 . . . . . .
by f”Jrz in Eq.(41), while 3(f/"; + fln]“) is used in Eq.(6). We are interested in

the numerical impacts with such different treatment for the source term f. Table

fi (41)

L2V



AMIB METHOD FOR PARABOLIC INTERFACE PROBLEM 3159

Table 2. Temporal convergence for example 1.

nt AMIB-GMRES
Lo Lo CPU time(s)
Error Order Error Order
2 1.32E-4 5.46E-4 2.76
4 8.98E-5 0.56 3.25E-4 0.75 5.28
8 2.48E-5 1.86 7.42E-5 2.13 9.73
16 | 6.21E-6 2.00 1.87E-5 1.99 19.36
32 1.56E-6 1.99 4.88E-6 2.02 37.88
64 | 6.26E-7 1.32 3.21E-6 0.60 76.9
128 | 5.60E-7 0.16 2.99E-6 0.10 148.4
AMIB-LU
Lo Lo CPU time(s)
Error Order Error Order
2 1.32E-4 - 5.46E-4 - 58
4 8.98E-5 0.56 3.25E-4 0.75 59.4
8 2.48E-5 1.86 7.42E-5 2.13 61.5
16 6.21E-6 2.00 1.87E-5 1.99 63.2
32 1.56E-6 1.99 4.88E-6 1.94 64.7
64 6.34E-7 1.30 3.24E-6 0.59 66.8
128 | 5.76E-7 0.13 3.04E-6 0.09 74
MIB
Ly Lo CPU time(s)
Error Order Error Order
2 1.32E-4 — 5.46E-4 — 21.97
4 8.98E-5 0.56 3.25E-4 0.75 42.34
8 2.48E-5 1.86 7.42E-5 2.14 81.72
16 | 6.21E-6 2.00 1.87E-5 1.98 153.34
32 1.56E-6 1.99 4.88E-6 1.94 287.03
64 | 6.27E-7 1.31 3.22E-6 0.60 533
128 | 5.69E-7 0.14 3.02E-6 0.09 863

3 shows their numerical comparisons between scheme (41) and (5) with f**2 in-
dicating scheme (41) and the other part for scheme (5). In this experiment, the
partition number in each direction is n, = 512. The temporal convergence can all
be determined according to the results. It can be found that the solution accuracy
from (5) with n; = 128 is comparable to that of (41) with n; = 256. Such accuracy
improvement justifies that scheme (5) is superior to (41) in terms of accuracy when
dealing with the interface jump conditions that are time and space independent.
On the other hand, it can be found in Tables 4 and 5 that the time costs from
scheme (5) and (41) are basically the same for each n;. From this point of view,
scheme (5) is a better choice for time evolution than (41). Thus we will focus on
scheme (5) in the following discussion to deal with the parabolic interface problem
under all kinds of circumstances.

The error versus time partition increment At on log-log scale from scheme (5)
is plotted on Fig.5, from which we can observe that the temporal second order
accuracy is obtained for both AMIB-GMRES and AMIB-LU methods.

On the other hand, the spatial convergence are investigated on the two methods.
The stopping time is fixed as T = 2, and the time increment is set as 0.002. The
second order spatial convergence of the two approaches concerned with source term
f can be observed from the results in Table 4. The comparison shows no much
difference on spatial accuracy by scheme (5) and (41).

We then want to study the impact of ratio of 3%t : S~ on the stability for
scheme (5). We will fix one of two 8 values equal to 1, then vary the value of the
other one to make the ratio large or small enough. We fix the partition number
in each direction as 128, and the stopping time equal to 2 with time increment
0.002. It can be observed from the Table 5 that the two AMIB methods are all
stable enough to deal with large contrast of the coefficients. On the other hand, the



3160 HONGSONG FENG AND SHAN ZHAO

Table 3. Temporal convergence for example 2.

ne AMIB—GMRES—f"+% AMIB-GMRES
Lo Lo CPU Lo L CPU
Error Order Error Order Error Order Error Order
2 3.22E-2 - 7.55E-2 - 3.04 | 1.39E-3 - 3.43E-3 - 2.81

4 5.56E-3 2.53 1.57E-2 2.27 5.9 3.14E-4 2.15 7.7TTE-4 2.14 5.69
8 9.47E-4 2.55 2.94E-3 2.42 12.5 | 7.59E-5 2.05 1.88E-4 2.05 11.2
16 1.67E-4 2.50 4.35E-4 2.76 23 1.89E-5 2.01 4.68E-5 2.01 22

32 3.82E-5 2.13 8.32E-5 2.39 45 5.00E-6 1.92 1.21E-5 1.95 45.4
64 9.68E-6 1.99 2.13E-5 1.98 87 1.44E-6 1.80 3.30E-6 1.87 96.3
128 | 2.579E-6 1.91 6.05E-6 1.82 168 6.60E-7 1.13 2.84E-6 0.22 170
256 9.03E-7 1.53 3.25E-6 0.91 334

AMIB-LU-f"*3 AMIB-LU
Lo Lo CPU Lo Lo CPU
Error Order Error Order Error Order Error Order
2 3.22E-2 - 7.55E-2 - 65 1.40E-3 - 3.44E-3 - 57

4 5.56E-3 2.53 1.57E-2 2.27 69 3.15E-4 2.15 7.79E-4 2.15 59.6
8 9.47E-4 2.55 2.94E-3 2.42 62 7.64E-5 2.04 1.89E-4 2.04 58.9
16 1.67E-4 2.50 4.35E-4 2.76 62 1.90E-5 2.01 4.70E-5 2.01 57.7
32 3.82E-5 2.13 8.32E-5 2.39 60.6 | 4.82E-6 1.98 1.17E-5 2.01 60.7
64 9.65E-6 1.99 2.11E-5 1.98 66 1.34E-6 1.85 3.05E-6 1.94 64.6
128 2.57E-6 1.91 5.98E-6 1.82 75.1 | 6.16E-7 1.12 2.70E-6 0.18 75.9

512 5.69E-7 0.64 2.76E-6 0.20 129

Table 4. Spatial convergence for example 2.

[y 1y AMIB-GMRES- f"* 2 AMIB-GMRES
Lo Lo CPU Lo Lo CPU
Error Order Error Order Error Order Error Order
[32,32] 1.15E-4 — 5.16E-4 1.11 2.25E-4 — 5.16E-4 — 1.19

[64, 64] 1.10E-4 1.03 3.42E-4 0.59 7.39 | 1.10E-4 1.03 3.42E-4 0.59 7.86
[128,128] | 1.44E-5 2.93 6.40E-5 2.42 42 1.44E-5 2.93 6.40E-5 2.42 43
[256,256] | 2.06E-6 2.82 1.54E-5 2.61 264 2.04E-6 2.82 1.04E-5 2.61 258
[512,512] | 5.18E-7 2.01 2.65E-6 1.99 1457 | 5.05E-7 2.01 2.62E-6 1.99 1463

AMIB-LU-f"+2 AMIB-LU
Lo Lo CPU Lo Lo CPU
Error Order Error Order Error Order Error Order
[32,32] 1.15E-4 - 5.16E-4 - 0.34 2.25E-4 - 5.16E-4 - 0.7

(64, 64] 1.10E-4 0.06 3.42E-4 0.59 1.66 | 1.10E-4 1.03 3.42E-4 0.59 1.78
[128,128] | 1.44E-5 2.93 6.40E-5 2.42 8.04 | 1.44E-5 2.93 6.40E-5 2.43 8.76
[256, 256]) | 2.06E-6 2.81 1.05E-5 2.61 39.4 | 2.05E-6 2.91 1.04E-5 1.79 41.6
[512,512] | 5.28E-7 1.96 2.68E-6 1.97 231 5.15E-7 1.99 2.65E-6 1.99 227
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Figure 5. The temporal convergence for example 2. The left is for
AMIB-GMRES, and the right is for AMIB-LU.

varying coefficient contrasts seem to have larger impact on the CPU time of AMIB-
GMRES than AMIB-LU. The CPU time of AMIB-GMRES become twice expansive
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when the ratio of 87 : 37 is raised from 10 : 1 to 10000 : 1. This is also the same
case for AMIB-GMRES when ratio of 37 : 37 is raised from 1 : 10 to 1 : 10000.
The milder impact on AMIB-LU is due to the direct solver by LU decomposition
rather than iterative solvers whose conditional number can be affected by the ratio
of BT : B~. Such conclusion is based on the comparison between the two AMIB
methods vertically in Table 5.

Note that the “Small 3 side” indicates the the MIB extrapolation part is fulfilled
by the function values from the domain related to the small 8. The “Large 8”7 side
indicates the domain related to the large /3 in a similar fashion. From the horizontal
comparison for each AMIB method in Table 5, MIB fictitious values with the “Small
[ side” extrapolation is superior to the one with the “Large 8 side”, because the
CPU time is less than that in the other way around for AMIB-GMRES. This justifies
the selection of 8 in remark 2 for concern of being well-conditioned. Hence, it is
preferable to adopt the fictitious values with the extrapolation part fulfilled using
the function values from domain of “small 8.” The accuracy of the approximate
solutions concerned with the “Small” or “Large” S has no much big difference
using AMIB-GMRES or AMIB-LU in this example. In the following examples, we
will adopt the “Small 5 side” strategy for both AMIB schemes.

Table 5. Spatial convergence for example 2 with respect to different
coefficient contrasts. n, = 128, At = 0.002.

87,871 AMIB-GMRES
Small B side Large 3 side
Ly Lo CPU time(s) Lo Lo CPU time(s)

[10000, 1] 1.63E-5 5.11E-5 71.4 1.86E-5 6.70E-5 92.6
[1000, 1] 1.63E-5 5.10E-5 65.4 1.86E-5 6.69E-5 92.8
[100, 1] 1.61E-5 5.04E-5 52.4 1.84E-5 6.60E-5 69.3

[10,1] 1.47E-5 4.43E-5 31.4 1.65E-5 5.74E-5 33.8

[1,10] 9.48E-6 4.71E-5 36.2 7.01E-6 3.44E-5 36.2
[1,100] 6.03E-5 1.56E-4 58.3 6.20E-5 1.45E-4 66.4
[1,1000] 4.66E-4 9.00E-4 67.8 6.38E-4 1.19E-3 81.6
[1,10000] 5.26E-4 8.52E-4 71.2 5.62E-3 1.02E-2 89.5
87,671 AMIB-LU

Small 8 side Large 3 side
Lo Loo CPU time(s) Lo Lo CPU time(s)

[10000, 1] 1.63E-5 5.11E-5 10.9 1.86E-5 6.72E-5 10.9
[1000, 1] 1.63E-5 5.10E-5 10.58 1.86E-5 6.71E-5 10.46
[100, 1] 1.61E-5 5.04E-5 8.8 1.84E-5 6.61E-5 9.1

[10,1] 1.47E-5 4.43E-5 6.8 1.66E-5 5.75E-5 6.9

[1,10] 9.48E-6 4.71E-5 7.0 7.03E-6 3.43E-5 6.9

[1,100] 6.03E-5 1.56E-4 9.2 6.20E-5 1.45E-4 8.5

[1, 1000] 4.66E-4 9.00E-4 8.6 6.38E-4 1.19E-3 8.6
[1,10000] | 5.29E-4 8.56E-4 9.0 5.63E-3 1.02E-2 8.7

Example 3. We are interested in the performance of the two AMIB methods on
complicated interface shape. In this example, we focus on the case of interface shape
governed by parametric function

r = 0.5+ 0.1sin(36), (42)
embedded in the domain [-%,%] x [-%,%] . The solution and all the related

boundary and interface conditions are set as in the last example. The stopping
time is given as T' = 1, and the coefficients are (3%,37) = (100, 1). The spatial
accuracy and convergence are examined with the small time increment At = 0.001.
The numerical results in Table 6 on the successively refined mesh demonstrate the
second order spatial accuracy.
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Table 6. Spatial convergence for example 3.

[na, nyl AMIB-GMRES
Lo Lo CPU time(s)
Error Order Error Order
[32,32] 6.70E-4 2.17E-3 1.67
[64, 64] 1.52E-4 2.14 5.05E-4 2.10 9.82
[128,128] | 3.63E-5 2.07 1.39E-4 1.86 53
[256,256] | 8.62E-6 2.07 3.52E-5 1.98 399
AMIB-LU
Lo Lo CPU time(s)
Error Order Error Order
[32,32] | 670684 -  2.17E3 - 0.42
[64, 64] 1.52E-4 2.14 5.05E-4 2.10 1.94
[128,128] | 3.63E-5 2.07 1.39E-4 1.86 8.54
(256, 256] | 8.62E-6 2.07 3.52E-5 1.98 45.5

We next examine the temporal order of the two AMIB methods by setting n, =
512, and the stopping time as T'= 1. As the time evolution scheme (5) is efficient
enough for the temporal convergence, the numerical results in Table 7 show that
both AMIB methods obtain their limiting convergence very quickly, leading to the
temporal second order observed from n; = 2 to n; = 4, and the reduced order in
further steps.

Table 7. Temporal convergence for example 3.

nt AMIB-GMRES
Lo Lo CPU time(s)
Error Order Error Order
2 | 4.83E-5 - 2.18E-4 - 4.1
4 1.39E-5 1.80 5.61E-5 1.96 7.9
8 5.22E-6 1.41 1.92E-5 1.55 15.9
16 | 2.68E-6 0.96 9.40E-6 1.03 31.5
32 | 2.15E-6 0.32 8.56E-6 0.14 66.6
AMIB-LU
Lo L CPU time(s)
Error Order Error Order
2 4.62E-5 - 2.13E-4 - 62.7
4 1.23E-5 1.91 5.46E-5 1.96 63.2
8 | 4.25E-6 1.53 1.60E-5 1.77 63.5
16 | 2.57TE-6 0.73 9.15E-6 0.81 67.6
32 | 2.23E-6 0.20 8.88E-6 0.04 68.1

Since the AMIB algorithm achieves second order accuracy for both spatial and
temporal discretization, we test the computing efficiency by refining the spatial and
temporal steps simultaneously. See the Table 8 with stopping time T' = 1. We can
observe that the second overall accuracy of the three methods are all achieved after
the spatial and temporal partition are refined at the same time. Such detected sec-
ond order accuracy can validate the temporal second order despite the reduced order
observation in the Table 7. The CPU time comparison of the three methods further
demonstrate the better efficiency of the two AMIB method over MIB method. Be-
sides, the time ratios of MIB method with mesh refinement are higher than the two
AMIB methods, meaning the MIB is the most expansive algorithm among the three.
AMIB-LU seems a little more efficient than AMIB-GMRES thanks to its relatively
smaller time ratio when the mesh is refined. The reason for its better efficiency is
mainly due to a smaller average number of multigrid solver (ANMG) being used in
each time step as recorded in the last column in Table 8. It can be seen that the
average number for AMIB-GMRES mildly increases as the mesh is refined. This is
due to the fact that the iteration number of GMRES solver in solving (30) weakly
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Table 8. Efficiency test for example 3.

() AMIB-GMRES
Lo Lo CPU time(s) time ratio ANMG
Error Order Error Order
(65, 20) 1.53E-4 5.08E-4 0.25 31.3
(129, 40) 3.63E-5 2.08 1.39E-4 1.87 2.22 8.9 35.2
(257, 80) 8.63E-6 2.07 3.52E-5 1.98 26.7 12.0 48.1
(513,160) | 2.16E-6 2.00 8.88E-6 1.99 342.9 12.8 57.3
AMIB-LU
Lo Loo CPU time(s) time ratio
Error Order Error Order
(65,20) | 1.53E4 = 5.08E4 = 0.15 5.2
(129, 40) 3.63E-5 2.08 1.39E-4 1.87 1.15 7.7 15.2
(257, 80) 8.63E-6 2.07 3.52E-5 1.98 10.1 8.8 15.2
(513,160) | 2.14E-6 2.01 8.79E-6 2.00 100.8 10 15.2
MIB
Lo Lo CPU time(s) time ratio
Error Order Error Order
(65, 20) 1.47E-4 - 5.05E-4 - 0.43
(129, 40) 3.62E-5 2.08 1.42E-4 1.87 5.94 13.8
(257, 80) 8.53E-6 2.07 3.56E-5 1.98 113.4 19.1
(513,160) | NA NA NA NA NA NA

depends on the grid numbers

. However, the average number remains constant for

AMIB-LU, since the majority of the number of multigrid solver used is on forming
the explicit matrix of left side of (30).

It can be noticed that the numerical results for MIB in the last row of Table 8 are
not available due to failure of convergence from the biconjugate gradient solver [31].
The non-convergence is not caused by stability issue on the algorithm, as a different
iterative solver, such as GMRES, can produce convergent iterative solution in our
numerical test. This demonstrated that the performance of the AMIB methods
does not heavily depend on the iterative solvers, while the MIB method does.

Example 4. We are interested in the stability performance of the two methods
on complicated interface shape. In this example, we focus on the case of interface
shape governed by parametric function

r = 0.5+ 0.1sin(50), (43)
embedded in the domain [-%, Z] x [-%, 5] .
The exact solution to this problem is
_f cos(t)em*7¥, in Q7,
u(l‘,y) - { COS(t)€:E+y, in Q+7 (44)

with the diffusion coefficients
L,
p= { 100,

The spatial convergence is validated by refining the mesh with the stopping time
T = 2, and time increment At = 0.002. In Table 9, the second order accuracy can
be observed for both AMIB methods.

We next examine the temporal order of the two AMIB methods by setting n, =
512, and the stopping time as T' = 0.001. The second order temporal convergence
can be observed in Table 10 from n; equal to 2 up to 16.

To numerically analyze the stability of the two AMIB schemes, we examine dif-

ferent time stepping. We choose n, = 128 and stopping time 7' equal to 10*At as
shown in Fig. 6. All numerical solutions are found to be stable with large temporal

in Q7,
in OQF.
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Table 9. Spatial convergence for example 4.

[na, nyl AMIB-GMRES
Lo Lo CPU time(s)
Error Order Error Order
[32,32] 4.08E-3 6.81E-3 1.67
[64, 64] 6.26E-4 2.70 1.12E-3 2.60 12.5
[128, 128] 2.26E-4 1.47 3.92E-4 1.51 89
[256, 256] 9.01E-5 1.33 1.54E-4 1.35 524
AMIB-LU
Lo Lo CPU time(s)
Error Order Error Order
[32, 32] 4.08E-3 — 6.81E-3 0.48
[64, 64] 6.26E-4 2.70 1.12E-3 2.60 2.50
[128,128] | 2.25E-4 1.47 3.91E-4 1.52 12.4
(256, 256] | 8.83E-5 1.33 1.51E-4 1.37 57

Table 10. Temporal convergence for example 4.

n AMIB-GMRES
Ly Lo CPU time(s)
Error Order Error Order
2 3.28E-3 — 5.60E-3 5.2
4 8.22E-4 2.00 1.38E-3 2.02 10.1
8 2.23E-4 1.88 3.65E-4 1.92 20.2
16 | 7.45E-5 1.58 1.16E-4 1.65 40.1
32 | 3.75E-5 0.99 6.05E-5 0.94 76.6
AMIB-LU
Lo Lo CPU time(s)
Error Order Error Order
2 3.28E-3 5.60E-3 — 75.8
4 | 8.21E-4 2.00 1.38E-3 2.02 75.3
8 2.23E-4 1.88 3.64E-4 1.92 7.7
16 7.41E-5 1.59 1.15E-4 1.66 80.1
32 | 3.75E-5 0.98 6.10E-5 0.94 82.7

increments. And the corresponding numerical errors are bounded as shown in Fig.

6. This justifies the reliable stability of our methods for solving parabolic interface
problem.

Example 5. We next study a problem

with multiple subdomains. Consider a 2D
parabolic equation

Uy = (5“1:)1: + (ﬂuy)y + q(x,y)
0.5 0.5
— : :
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0af | TP o oaf [t I
oL P - L N
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Figure 6. Stability test for the two AMIB methods. The left one is for

AMIB-GMRES, and the right one is for AMIB-LU. All the numerical
errors are bounded with n, = 128, and T' = 10*At.
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defined in a square domain Q = [~Z, %] x [-%, ], which is divided into three
regions by two ellipse shape interface:
2
y+?>
(25 -
12

e 2
PLZ (x_j;ﬁ)'F
9
12 9

Three pieces of solutions are defined in each subdomain

cos(t) cos(kx) sin(ky) inside I'y,
u(z,y) = { cos(t) cos(kx)sin(ky) inside T'g,
cos(t)e*tv otherwise,

where parameter k is set to be 5. The diffusion coefficients are also defined respec-
tively as
100, inside T'p,
b= 10, inside I'g,
1, otherwise,

and the parameter k is set as 5. The source term ¢(z,y) can be determined by the
analytical solutions, and Dirichlet boundary conditions are assumed.

The second order spatial and temporal accuracy of solutions have been examined
through above examples. Besides, we want to further investigate the convergence
rate of the gradient recovery. Second order central difference is adopted to approxi-
mate the gradients with fictitious values replacing obtained numerical real function
values when the stencil cuts through the interface. Table 11 shows that second order
convergence is achieved for both solutions and gradients from the three methods in
solving the multi-domain problem. With the confirmed second orders of the three
methods, we pay attention to the comparison of the methods on overall efficiency
for solving multi-domain problem . Table 11 demonstrates the efficiency test, where
it can be observed that AMIB-LU outperform the other methods for solving such
problems. The last column of Table 11 shows that AMIB-LU has smaller time ratio
than AMIB-GMRES or AMIB with mesh refinement. In particular, the comput-
ing time by MIB is almost 19 times larger than that of AMIB-LU in dealing the
multi-domain problem on the (n,,n;) = (513, 160) mesh, further demonstrating the
efficiency improvement from AMIB-LU.

We note that there exist more challenging multi-material interface problems,
in which two or more material interfaces join together or cross each other. A
second order accurate MIB method has been developed in [38] for elliptic equations
with intersecting interfaces. Based on such a MIB method, an augmented MIB
method could be developed for intersecting interface problems. This is an interesting
direction to explore in the future.

Example 6. We investigate a physical problem modeled by the heat equation
without analytical solutions

subject to the homogeneous interface condition
[u] =0 (45)

[Bu) =0 (46)
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Table 11. Efficiency test for example 5..

(ng,nt) AMIB-GMRES
Solution
Lo Lo CPU time(s) time ratio
Error Order Error Order
(65, 20) 3.00E-2 - 7.43E-2 - 0.37
(129, 40) 8.96E-3 1.74 2.24E-2 1.73 3.96 10.7
(257, 80) 1.57E-3 2.51 4.02E-3 2.48 44.46 11.2
(513,160) | 3.23E-4 2.28 8.28E-4 2.28 562 12.6
Gradient
Lo Lo
Error Order Error Order
(65, 20) 9.38E-2 — 0.37 —

(129, 40) 2.83E-2 1.732 0.12 1.62
(257, 80) 5.07E-3 2.48 2.15E-2 2.48
(513,160) | 1.21E-3 2.07 5.29E-3 2.02

AMIB-LU
Solution
Lo Lo CPU time(s) time ratio
Error Order Error Order
(65, 20) 3.00E-2 - 7.43E-2 - 0.15
(129, 40) 8.95E-3 1.75 2.23E-2 1.74 1.22 8.1
(257, 80) 1.58E-3 2.50 4.05E-3 2.46 11.7 9.6
(513,160) | 3.71E-4 2.09 9.54E-4 2.09 127 10.9
Gradient
Lo Lo
Error Order Error Order
(65, 20) 9.38E-2 - 0.37 -

(129, 40) 2.82E-2 1.73 0.12 1.62
(257, 80) 5.11E-3 2.46 2.17E-2 2.47
(513,160) | 1.21E-3 2.08 5.29E-3 2.04

MIB
Solution
Lo Lo CPU time(s) time ratio
Error Order Error Order
(65,20) | 3.61E-2 - 9.21E-2 - 0.44
(129, 40) 1.10E-2 1.74 2.87E-2 1.68 7.38 16.8
(257, 80) 1.41E-3 2.46 3.90E-3 2.88 143 19.4
(513,160) | 2.17E-4 2.09 9.89E-4 1.98 2372 16.6
Gradient
Lo Lo
Error Order Error Order
(65, 20) 0.12 - 1.93 -
(129, 40) 3.53E-2 1.76 0.44 2.13
(257, 80) 4.51E-3 2.97 0.13 1.76

(513,160) | 9.73E-4 2.21 2.42E-2 2.43

on the interface r? := 22+ y* = 1 embedded in the domain [-%, %] x [~%, 2] . The
diffusion coeflicients
100, in Q,
5-{

1, in QF.

The Dirichlet boundary condition equal to zero is imposed at the boundary of given
domain. Besides, the initial condition is defined as

e~ @/ i Q-
(@, y) = 0 in o

with parameter o = 0.1. As the analytical solution is not readily available, we gen-
erate the reference solution on certain mesh to examine the numerical performance
of the two AMIB methods.

The spatial convergence is validated by refining the mesh under time increment
At = 0.001 for stopping time T = 1. The reference solution is created on the mesh

(47)
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Figure 7. The numerical errors from two AMIB methods.
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(ng, At) = (512,0.0005). The second order accuracy can be observed for both AMIB

methods in Table 12.

Table 12. Spatial convergence for example 6.

[na, nyl AMIB-GMRES
Lo Lo CPU time(s)
Error Order Error Order
[32,32] 4.09E-5 - 6.66E-5 - 0.65
[64, 64] 2.24E-5 0.87 3.63E-5 0.88 4.02
[128, 128] 5.04E-6 2.15 8.19E-6 2.15 22.3
[256,256] | 9.47TE-7 2.41 1.56E-6 2.39 151
AMIB-LU
Lo Lo CPU time(s)
Error Order Error Order
[32, 32] 4.09E-5 — 6.66E-5 - 0.25
(64, 64] 2.23E-5 0.88 3.62E-5 0.88 1.36
[128,128] | 5.06E-6 2.14 8.22E-6 2.24 7.06
[256,256] | 9.97E-7 2.34 1.63E-6 2.33 34.9

The temporal convergence is validated in a similar fashion by refining time in-
crement for a fixed stopping time 7" = 1, and the spatial discretization is based
on mesh (ngz,ny) = (256,256). The reference solution is obtained on the mesh
(ng, At) = (512,0.0005). Due to the practical physical phenomenon modeled by
heat equation, the temperature quickly drops in a very short time, leading to large
approximation errors when a large time step size is adopted as shown in Fig. 7.
Nevertheless, small time steps can produce well approximated solutions. This is
true for both AMIB-GMRES and AMIB-LU methods, especially when n; > 160
is employed. For such reason, it is difficult to observe the expected second order
temporal convergence.

The figure 8 shows solution evolution over time for this physical model. As
discussed before, the temperature drops quickly in a short time. This can be ob-
served in Fig. 7 when time is changing from 0 to 0.1. When time equals to 1, the
temperature has dropped to a magnitude of 10~%.

4. Summary. In this work, a new finite difference method has been proposed
to solve parabolic interface problem with second order accuracy achieved in both
time and space. The efficiency is fulfilled with multigrid method built in the Schur
complement process in the framework of an augmented system. A simple multigrid
solver is designed to solve the linear system due to the special structure of coefficient
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Figure 8. The solution of heat equation evolves within time equal to
1. The rapid change during initial period indicates quick temperature
drop.

matrix as part of the augmented system. Two approaches based on the multigrid
solver are proposed in the time-step process, with one incorporated in GMRES
iteration for each time evolution, and the other one used in the coefficient matrix
formation of LU decomposition solver in the first time step. The latter approach
with LU decomposition can be more efficient especially when a lot of time-stepping
evolutions are needed for solving the given parabolic interface problem. Both AMIB
methods are significantly faster than the standard MIB method. Moreover, being
free of stability constraint, the present implicit method could be asymptotically
faster than explicit schemes.

The immersed interface method (IIM) has been applied to variable coefficient
elliptic equations [4, 21], and these studies demonstrated how to adopt numerical
components, such as jump-corrected differences, augmented system, and multigrid
solver, for variable coefficient problems. Thus, based on these studies, it is possible
to generalize the present mulitgrid AMIB method for variable coefficient interface
problems. This will be explored in the future.
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