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A New Boundary Closure Scheme for the
Multiresolution Time-Domain (MRTD) Method

Pengfei Yao and Shan Zhao

Abstract—This paper introduces a novel boundary closure
treatment for the wavelet based multiresolution time-domain
(MRTD) solution of Maxwell’s equations. Accommodating
non-trivial boundary conditions, such as the Robin condition or
time dependent condition, has been a challenging issue in the
MRTD analysis of wave scattering, radiation, and propagation. A
matched interface and boundary (MIB) method is introduced to
overcome this difficulty. Several numerical benchmark tests are
carried out to validate the MIB boundary scheme. The proposed
boundary treatment can also be applied to other high order
finite-difference time-domain (FDTD) approaches, such as the
dispersion-relation-preserving (DRP) method. The MIB boundary
scheme greatly enhances the feasibility for applying the MRTD
methods to more complicated electromagnetic structures.

Index Terms—Convergence of numerical methods, finite differ-
ence time domain methods.

I. INTRODUCTION

I T is well known that numerical dispersion is a major lim-
iting factor for the applicability of the finite-difference time-

domain (FDTD) scheme to electromagnetic problems involving
electrically large structures. Typically, the dimensions of the
scatterer in such problems greatly exceed the wavelength of the
incident wave so that the grid size required by using the FDTD
method could become prohibitively expensive. In order to cir-
cumvent this difficulty, numerical approaches that are able to ac-
curately represent the wave solution by using only a few points
per wavelength must be employed to relieve the computational
cost. This motivates the development of many low dispersion or
high order FDTD methods in the past two decades, including
FDTD(2,4) scheme [1], wavelet based multiresolution time-do-
main (MRTD) methods [2], [3], Fourier pseudospectral time-do-
main (PSTD) methods [4], [5], dispersion-relation-preserving
(DRP) FDTD methods [6], [7], and local spectral time-domain
(LSTD) methods [8], [9], etc.

What are more related to the present paper are the MRTD
methods, even though the proposed boundary closure scheme
can be applied to other long stencil FDTD approaches, such
as the DRP-FDTD or LSTD. The original MRTD schemes
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[2], [3] are derived using cubic spline Battle-Lemarie scaling
and wavelet functions. When electromagnetic fields are ex-
panded solely in terms of scaling functions, the corresponding
MRTD scheme is usually called as an S-MRTD scheme, while
W-MRTD scheme refers to a scheme in which both scaling and
wavelet functions are used as basis functions. Since the orthog-
onal Battle-Lemarie wavelet family is not compactly supported,
various MRTD methods using compactly supported wavelet
expansions have been developed in the literature. For example,
novel MRTD methods based on Coifman and Daubechies
scaling functions have been introduced, respectively, in [10]
and [11]. A general framework for constructing MRTD algo-
rithms based on biorthogonal scaling and wavelet functions has
been established in [12], with a particular realization given to
the Cohen-Daubechies-Feauveau (CDF) biorthogonal wavelets.
The stencil length of the Daubechies type MRTD methods can
be adjusted by the number of vanishing moments, while the
latter also determines the order of accuracy of the resulting
MRTD spatial discretization [13]. In [14], a systematic proce-
dure is proposed to update the time in the MRTD calculations
by using a novel Runge-Kutta scheme so that an arbitrarily high
order of convergence in both space and time could be realized.
The Fourier dispersive error analysis of some MRTD schemes
and a comparison with the standard high order FDTD schemes
have been conducted in [15].

The MRTD methods all use wide stencils. Thus, special
boundary treatments are required near boundaries where the
MRTD approximation may refer to nodes outside the computa-
tional domain [16], [17]. Like other time-domain approaches,
the perfectly matched layer (PML) absorbing boundary con-
ditions can be naturally incorporated into the collocation
procedure of the MRTD schemes [18], while the simple image
principle is commonly used in the MRTD calculations to deal
with perfect electric conducting (PEC) or perfect magnetic
conducting (PMC) boundary conditions [2]. In order to handle
the PEC conditions in different scenarios, several advanced
boundary closure schemes [19]–[21] have been introduced to
the MRTD analysis. The generalization of the image principle
at the PEC walls of the multi-layer dielectric structures has been
formulated in [19]. An elegant extension of the CDF-MRTD
schemes to treat thin metallic irises or infinitely thin perfect
electric walls has been presented in [20]. Modification of basis
expansion has been suggested in [21] for the purpose of imple-
menting the image principle for the MRTD methods with basis
functions being non-symmetric and/or without interpolation
property. In summary, the existing MRTD boundary treatments
can only handle some regular boundary conditions, such as
the PML, PEC, and PMC conditions. No general boundary
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closure procedure is available for the MRTD methods to ac-
commodate more complicated boundary conditions, such as the
Robin/mixed condition. This greatly limits the possible appli-
cation of the MRTD methods to more general electromagnetic
calculations.

The objective of the present work is to construct a general
procedure to implement nontrivial boundary conditions in the
MRTD discretization. This is accomplished by introducing a
fictitious domain boundary closure via the matched interface
and boundary (MIB) method. For regular domain with straight
boundaries, the MIB boundary scheme has been constructed
for supporting arbitrarily high order central finite difference
methods [16], [17]. Successive implementations of the MIB
scheme for treating curved dielectric interfaces [22], [23] and
curved PEC walls [24] have also been carried out. In the present
study, to illustrate the proposed boundary closure scheme, the
CDF S-MRTD method [12] will be employed. We note that
the proposed procedure can be extended to other S-MRTD and
W-MRTD methods. The rest of this paper is organized as the
follows. Section II is devoted to the theory and algorithm of
the MIB boundary closure scheme. Numerical tests involving
Robin and time-dependent boundary conditions are carried
out to validate the proposed method in Section III. Finally, a
conclusion ends this paper.

II. THEORY AND ALGORITHM

A. Multiresolution Time-Domain (MRTD) Analysis

Assuming the absence of charge density and current source,
and linear isotropic constitutive relations, we consider the trans-
verse magnetic (TM) modes that are governed by the time-de-
pendent two-dimensional (2D) Maxwell’s equations

(1)

(2)

where and are, respectively, the normalized electric and
magnetic field intensities and and are the relative electric per-
mittitivy and magnetic permeability of material, respectively.
Here, a nondimensional form of the equations is considered, i.e.,

in free space. Throughout, the medium is assumed
to be nonmagnetic with .

In the multiresolution time-domain (MRTD) analysis, basis
functions can be chosen as scaling functions only or both scaling
and wavelet functions. To illustrate the proposed boundary pro-
cedure, we concern ourselves with the S-MRTD schemes, i.e.,
using scaling functions only

(3)

(4)

(5)

TABLE I
COEFFICIENTS FOR THE CDF-MRTD SCHEME [12]

where is an appropriate scaling function for the particular
scheme being used, and the unknown field expansion coeffi-
cients , , and are time depen-
dent. The staggered Yee grid can be naturally employed in such
a MRTD expansion. In a homogeneous medium, the MRTD
semi-discretization of Maxwell’s equations (1) and (2) can be
given as

(6)

(7)

(8)

where and are the spacing in and directions. In the
present MRTD calculations, the Cohen-Daubechies-Feauveau
(CDF) MRTD coefficients [12] will be employed for and
are given in the Table I. For such MRTD methods, the spatial
order of accuracy of the CDF(2, ) biorthogonal family is known
to be [13]. Thus, the order of accuracy in space for the
CDF(2,2), CDF(2,4), and CDF(2,6) MRTD schemes is, respec-
tively, four, six, and eight. The temporal discretization of (6)–(8)
can be simply formulated by using various standard time step-
ping methods. The classical fourth order Runge-Kutta method
will be utilized such that both spatial and temporal orders of
accuracy are at least four for the present MRTD analysis. How-
ever, the overall high order of accuracy of the present MRTD ap-
proach can still be impaired by deficient treatments of boundary
conditions, particularly when complicated boundary conditions
are encountered.

B. Image Principle

In the MRTD methods, the image principle is commonly
used to deal with the perfect electric conducting (PEC)
and perfect magnetic conducting (PMC) boundary condi-
tions. This is a treatment to implement simple boundary
conditions by assuming that there is a one-to-one corre-
spondence between the inner grid node and the imaging
fictitious node outside the domain. For example, for a problem
with interval being , consider a uniform grid

.
Here the actual mesh size of the partition is , while
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represents the maximal number of fictitious points needed in a
particular MRTD scheme, in order to ensure the MRTD spatial
approximations (6)–(8) throughout the domain . Consider
the right boundary as an example and denote a function to
be either or . One could assume the following one-to-one
image principle at the boundary

(9)

for . In the PEC condition, we have
at the right end . By using Maxwell’s equations, one can
further derive that at [24]. Thus, the
PEC condition for can be satisfied by choosing
in (9). This is also called an anti-symmetric boundary exten-
sion [17]. The PEC condition for , i.e., , can
be imposed by taking in (9). This is also called a sym-
metric boundary extension [17]. The image principle (9) can ac-
tually handle some boundary conditions that are more compli-
cated than the PEC ones. Please see [17] for more details.

C. Matched Interface and Boundary (MIB) Treatment

However, for more general boundary conditions, such as the
Robin condition, the image principle (9) can not be rigorously
valid or can only be satisfied up to second order accuracy. Ob-
viously, a more reasonable assumption is that a fictitious value

should not depend on one inner value only, it
should depend on a set of function values inside the boundary.
This motivates the development of the matched interface and
boundary (MIB) boundary scheme [16], [17].

We illustrate the idea by considering a Robin type boundary
condition at

(10)

The MIB boundary treatment assumes a function relation which
is generalized from the image principle:

(11)

where are the MIB representation coefficients and
. Thus, in the MIB discretization, each

fictitious value outside the domain will depend on
inner values and one inhomogeneous boundary value . An
iterative procedure is commonly used in the MIB method to
determine these fictitious values one by one.

At the first step, since only one boundary condition is avail-
able, one can only determine one fictitious point ,
see the Fig. 1. In the MIB scheme, the first derivative in the
Robin condition (10) will be approximated by using one-sided
finite difference with grid points inside and one fic-
titious node outside. In particular, we choose as the
differentiation point of the finite difference and denote it as
the origin of the local grid stencil: .
We denote the corresponding finite difference weights to be

. Here the subscript of

the weight is for the local grid index, while the super-
script represents the fact that there are totally nodes in

Fig. 1. Illustration of the MIB grid partition and the iterative procedure. Filled
circles: regular nodes; Partially filled circles: solved fictitious nodes; Open cir-
cles: unsolved fictitious nodes.

this stencil. Based on such a partition, the boundary condition
(10) is discretized to be

(12)

The only unknown in (12) can be solved in terms of
other values, giving rise to the following representation coeffi-
cients: , , and

for .
At the second step, we are about to determine the second

fictitious value , see Fig. 1. One possible way is to
solve in a process similar to that in the first step, by
also considering only one fictitious node outside the domain. A
more accurate treatment is usually employed in the MIB scheme
by considering two fictitious nodes simultaneously. The same
boundary condition (10) is now discretized as

(13)

where are the finite difference weights to approxi-
mate first derivative at based on a local grid stencil:

. Here the superscript in-
dicates that there are totally nodes involved in this
approximation. From (13), one can solve in terms
of the others. Then, the known representation coefficients for

can be substituted in so that will also de-
pend on regular function values and . Consequently,
the representation coefficients for can
be attained. Through such an iterative procedure, the total
fictitious points can be efficiently determined in steps, see
Fig. 1. The MIB treatment of other boundary conditions can be
similarly carried out.

We note that in the MIB method, boundary conditions are en-
forced systematically so that it can achieve arbitrarily high or-
ders in principle. In practice, the order of accuracy of the MIB
scheme is dominated by the total number of interior support
nodes . One has certain flexibility in choosing in the finite
different approximation. A large value is usually selected to
ensure that the order of accuracy in the MIB boundary treatment
is not less than that of the MRTD scheme. Nevertheless, for un-
steady problems, a very large may render the MIB method
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unstable. The stability issue of the MIB method has been dis-
cussed in [17]. To guarantee the stability, one should choose
according to the upbounds established in [17].

An advantage of the generalized image principle (11) is
that the representation coefficients are independent of the
boundary data . Consequently, they are time invariant.
Thus, the MIB scheme actually needs to be carried out only
once at the beginning, even though takes different value
at different time. Therefore, the computational overhead in-
troduced by the MIB boundary treatment is negligibly small
in real MRTD computations. In summary, the MIB method
provides a fictitious domain support so that the MRTD methods
can be applied in a translation invariant manner throughout
the domain. Furthermore, since the proposed MIB boundary
treatment does not depend on the MRTD discretizations, this
boundary closure scheme can be applied to other high order
finite-difference time-domain (FDTD) methods.

III. NUMERICAL EXPERIMENTS

In this section, we examine the usefulness of the MIB
boundary treatment by testing its robustness, accuracy, and con-
vergence. Three MRTD schemes, i.e., the CDF(2,2), CDF(2,4),
and CDF(2,6), are employed for the spatial discretization and
the classical fourth order Runge-Kutta method is used for the
temporal integration. Based on the given initial values at time

, Maxwell’s equations (1) and (2) will be solved until a
stopping time . Here we choose for all tests in our
non-dimensionalized unit system. A uniform grid is employed
in all examples, with being the mesh size along each
direction. Unless otherwise specified, a small time increment

is used to ensure that the temporal discretization
error is negligible in our present tests. The absolute errors
will be reported in all cases.

A. Example 1: Hollow Rectangular Waveguide

We first validate the MIB boundary closure scheme by con-
sidering a air filled rectangular waveguide with perfect con-
ducting walls [9]. Designed to solve complicated boundary con-
ditions, the MIB boundary closure scheme can also handle the
simple PEC boundary conditions. Moreover, such a study actu-
ally enables us to compare the MIB boundary method with the
image principle.

The cross section of the hollow waveguide is chosen as
. Such a simple structure permits analyt-

ical solutions:

(14)

where , and and are
the wavenumbers. For the present example, two PEC conditions
for magnetic components are involved: at
and , and at and . For ,
we originally have at four PEC walls. According to

TABLE II
THE MRTD RESULTS OF EXAMPLE 1 BY USING THE IMAGE PRINCIPLE

Here 1.482(�3) denotes ������ �� . In Case 1, � � � � � and in
Case 2, � � � � ��.

TABLE III
THE MRTD RESULTS OF EXAMPLE 1 BY USING THE MIB SCHEME

In Case 1, � � � � � and in Case 2, � � � � ��.

Maxwell’s equations, it is easy to derive two electric PEC con-
ditions: at and , and
at and . With little modification, the MIB treatment
discussed in the previous section can be applied to solve these
four PEC conditions.

In the present computations, the initial values are taken ac-
cording to the analytical solutions. The physical parameters are
chosen as and . Two test cases are exam-
ined with in Case 1 and in Case 2.
The high frequency solutions in Case 2 are particularly impor-
tant to investigate the performance of high order methods. The
numerical results of the image principle and the MIB boundary
scheme are listed, respectively, in Table II and Table III.

The image principle is obviously satisfied for the present an-
alytical solutions (14). Thus, the numerical errors reported in
Table II are primarily due to the MRTD spatial discretizations.
As mentioned above, the order of accuracy for the CDF(2,2),
CDF(2,4), and CDF(2,6) MRTD schemes is, respectively, four,
six, and eight. Such orders have been numerically verified in the
low frequency case and the high frequency case with a large .

With the confidence of the present MRTD spatial discretiza-
tion, we now turn to the MIB boundary closure. A large enough

is used in the MIB scheme. In particular, we choose , 5,
and 7, respectively, for the CDF(2,2), CDF(2,4), and CDF(2,6)
MRTD schemes. It can seen from the Table III that the MIB re-
sults are in good agreement with those of the image principle,
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Fig. 2. Numerical convergence rates of the MIB-MRTD method. (a) Example 1, Case 1; (b) Example 1, Case 2; (c) Example 2, Case 1; (d) Example 2, Case 2;
(e) Example 3, Case 1; (f) Example 3, Case 2; (g) Example 4, Case 1; (h) Example 4, Case 2. In all cases, the solid line represents the least squares fitted linear
trend. The slope of this line reveals the overall numerical order of the spatial discretization, and is labeled on the graph.

with very minor differences. This validates the MIB boundary
closure scheme.

We further examine the order of convergence of the
MIB-MRTD spatial discretization by plotting the numer-
ical errors in chart (a) and (b) of Fig. 2. These errors are shown
as dashed lines. A linear fitting by means of the least squares
is then conducted for each case in the log-log scale. The
corresponding fitted convergence lines are depicted as solid
lines in Fig. 2. Moreover, the fitted slope essentially represents
the numerical convergence rate of the MIB-MRTD method.
These rates are shown in Fig. 2 too. It is interesting to note that
there are some differences between the convergence patterns
of the low frequency test (Case 1) and the high frequency test
(Case 2). It is known that the high frequency test is challenging
to low order methods or coarse numerical meshes. Thus, the
overall rate of CDF(2,2) for the Case 2 is only ,
although it attains a value of 3.67 when in Table III.
On the other hand, with , all three MRTD schemes
perform poorly. We even have that the higher order method

yields a larger error. This is because the grid resolution is too
low in this case, i.e., only 4 grid points per wavelength (PPW).
With such a low PPW, only spectral type methods, such as
pseudospectral time-domain (PSTD) methods [4], [5] or local
spectral time-domain (LSTD) methods [8], [9], can deliver rea-
sonable accuracy. For the present problem, the MRTD methods
perform better when is larger. Eventually, the numerical
orders of both the CDF(2,4) the CDF(2,6) are quite close to the
theoretical ones.

The currently chosen MIB parameter values of are
within the upbounds given in [17] so that the MIB-MRTD
computations are guaranteed to be conditionally stable. An
interesting question next is whether the MIB scheme will affect
the Courant-Friedrichs-Levy (CFL) factor of the underlying
MRTD method or not. To this end, we detect the numerical
CFL numbers of the MRTD discretization with or without MIB
boundary closure. In particular, we consider the Case I with

and a stopping time . Denote the total number
of time steps to be . We have . We numerically
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TABLE IV
THE NUMERICAL CFL NUMBERS FOR EXAMPLE 1

Fig. 3. Computational domain of Example 2 (left) and Example 3 (right).

search for the critical values such that the computation is
still stable. Then, the numerical CFL number is reported to be

. See Table IV. It is clear that the CFL numbers
with and without MIB scheme are essentially the same. This
is in consistent with our previous findings that for hyperbolic
equations, the MIB method maintains the same CFL number as
the underlying spatial method whenever it is stable [17].

B. Example 2: Shifted Computational Domain

We next study a synthetic example based on the hollow rect-
angular waveguide. Consider the same physical setting as in the
Example 1, but with a shifted computational domain

. Denote four boundaries of this new
domain to be , , , and , see Fig. 3(a). We then have
that the PEC conditions are not valid on and , although
the same analytical solutions are assumed. Instead, the correct
boundary conditions are constructed as the follows:

(15)

(16)

(17)

(18)

The image principle obviously cannot handle these complicated
boundary conditions.

The MIB treatment of two conditions (15) and (16) can
be carried out similarly. Nevertheless, a subtle point needs to
be taken care of in solving magnetic boundary conditions (17)
and (18). We illustrate this by considering (17) as an example.
By using a staggered grid, there is actually no grid node for
located exactly on the boundary point . Thus, the
second term in (17), i.e., , cannot be directly eval-
uated in the MIB discretization. Instead, the value shall be
interpolated based on the same grid stencil used for approxi-

TABLE V
THE RESULTS OF THE MIB-MRTD METHOD FOR EXAMPLE 2

In Case 1, � � � � � and in Case 2, � � � � ��.

mating the second derivative. In this manner, the MIB scheme
can be proceeded as in the previous studies.

The numerical results of the MIB-MRTD method are reported
in Table V. These results are also depicted in chart (c) and (d)
of Fig. 2. It can be seen that the MIB-MRTD schemes attain the
correct numerical orders in both low and high frequency tests.
Furthermore, the convergence patterns of the high frequency
case become better, in comparing with those of the Example 1.
This is because a smaller computation domain in the Example
2 actually implies a larger PPW. The present result shows that
the overall performance of the MIB scheme in handling compli-
cated boundaries is satisfactory.

C. Example 3: Rectangular Open Cavity

We then consider a 2D rectangular open cavity embedded in
an infinite ground plane, see Fig. 3(b). The study of electro-
magnetic scattering by such a cavity is of great industrial and
military interests, because the open cavity can be regarded as
a prototype structure of a more realistic one, such as a jet en-
gine inlet duct or exhaust nozzle [25]. Denote the width of the
cavity as and the depth as . The cavity walls and ground
plane are usually assumed to be PEC boundaries. The original
cavity problem is defined on cavity and the half space above the
ground plane with Sommerfeld’s radiation conditions imposed
at infinity. A modern approach to solve cavity problem is to in-
troduce a transparent boundary condition above the cavity [25],
i.e., along in Fig. 3(b). This induces a computational domain

within the rectangular cavity.
In the present study, we numerically solve 2D Maxwell’s

equations (1) and (2) within the rectangular cavity. To bench-
mark our numerical results, a set of analytical solutions is con-
structed as the follows:

(19)

where , and and are the
wavenumbers. Note that the time harmonic part of the analyt-
ical solution (19) actually represents a single mode of the mode-
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TABLE VI
THE RESULTS OF THE MIB-MRTD METHOD FOR EXAMPLE 3

In Case 1, � � � and � � � and in Case 2, � � �� and � � �.

matching solution which converges to the exact solution of the
scattering problem [25]. With the PEC conditions on , , and

, the Robin type boundary conditions are assumed on :

(20)

(21)

The MIB scheme for conditions (20) and (21) can be carried
out exactly as what was described in Section II. We note that
even though the boundary data is a spatial function along the
boundary and time variant, i.e., , the MIB representation
coefficients solved from boundary conditions (20) and (21) are
still time independent and independent. Thus, it is sufficient
to conduct the MIB treatment only once. The solved represen-
tation coefficients can then be applied at any time and at any
node along . Therefore, the MIB boundary treatment is com-
putationally very efficient.

In the present study, the physical parameters are chosen as
and . Again, two test cases are studied with
and in Case 1 and and in Case 2.

The numerical results are shown in Table VI and chart (e) and (f)
of Fig. 2. It can be seen that the correct spatial order of accuracy
is achieved in all tests. We note that the MRTD errors are greater
than 0.2 when for the high frequency case. This is be-
cause the present solution is highly oscillatory along direction,
while is subject to a very rapid exponential growth along direc-
tion. See Fig. 4. Such a solution is very difficult to be resolved
on a coarse grid. Nevertheless, when we refine the mesh, a sat-
isfactory accuracy is achieved by the MIB-MRTD scheme.

D. Example 4: A Test Without Analytical Solution

We finally consider a test without analytical solution. The
hollow rectangular waveguide with four PEC boundaries in the
Example 1 is studied again. However, we consider the structure
being excited by Gaussian type pulses initially. Such a study
can be used to numerically predict the cutoff frequencies of the
structure [9]. Two initial values of are considered

(22)

(23)

Fig. 4. Plot of numerical solution � at time � � � by using the CDF(2,6) and
� � ��. (a): Example 3, Case 2; (b): Example 4, Case 2.

respectively, for Case 1 and Case 2, while the initial values of
and are chosen as zero. Here , , and

. The PEC conditions hold in Case 2, while the initial
solution of Case 1 satisfies the PEC conditions approximately,
since the Gaussian decays to a negligibly small values at the
boundaries. We then integrate Maxwell’s equations to .
No analytical solution is available to benchmark our MIB re-
sults. Thus, an “exact solution” obtained by the MIB-MRTD
with CDF(2,6) and a dense mesh is used as the refer-
ence. In comparing with the reference solution, the MIB-MRTD
errors are shown in Table VII and chart (g) and (h) of Fig. 2. It
can be seen that the correct orders are numerically achieved,
even though the solution is highly irregular, see Fig. 4(b).

IV. CONCLUSION

In conclusion, we have introduced a novel boundary closure
scheme, the matched interface and boundary (MIB) method, for
the treatment of general boundary conditions in the multireso-
lution time-domain (MRTD) calculations of Maxwell’s equa-
tions. In the MIB method, boundary conditions are repeatedly
utilized to systematically determine a set of fictitious values out-
side the domain. Consequently, the MRTD approximation can
be applied in a translation invariant manner near the boundary.
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TABLE VII
THE RESULTS OF THE MIB-MRTD METHOD FOR EXAMPLE 4

Several numerical experiments have been carried out to demon-
strate the robustness of the MIB scheme in handling compli-
cated boundary conditions, such as Robin and/or time-depen-
dent ones. The MIB boundary treatment can achieve arbitrarily
high order accuracy in principle. In the present study, the MIB
orders are guaranteed to be not less than that of the underlying
MRTD spatial discretization, so that the MIB-MRTD methods
achieve the theoretical orders in all numerical tests. The MIB
coefficient generation can be carried out only once to deal with
boundary conditions with spatial and temporal dependent inho-
mogeneous terms. Thus, the MIB boundary treatment is compu-
tationally cheap. The MIB fictitious domain treatment does not
assume any a priori knowledge of wave solutions, so that it has
no limitation to be applied to real world electromagnetic prob-
lems. The MIB treatment of nontrivial boundary conditions on
irregular domains is currently under our consideration.
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