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SUMMARY

High-order central finite difference schemes encounter great difficulties in implementing complex boundary
conditions. This paper introduces the matched interface and boundary (MIB) method as a novel boundary
scheme to treat various general boundary conditions in arbitrarily high-order central finite difference
schemes. To attain arbitrarily high order, the MIB method accurately extends the solution beyond the
boundary by repeatedly enforcing only the original set of boundary conditions. The proposed approach is
extensively validated via boundary value problems, initial-boundary value problems, eigenvalue problems,
and high-order differential equations. Successful implementations are given to not only Dirichlet, Neumann,
and Robin boundary conditions, but also more general ones, such as multiple boundary conditions in
high-order differential equations and time-dependent boundary conditions in evolution equations. Detailed
stability analysis of the MIB method is carried out. The MIB method is shown to be able to deliver
high-order accuracy, while maintaining the same or similar stability conditions of the standard high-order
central difference approximations. The application of the proposed MIB method to the boundary treatment
of other non-standard high-order methods is also considered. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite difference (FD) method is the oldest while still a widely used approach for the numerical
solution of partial differential equations [1–4]. To achieve high-order accuracy as well as high

∗Correspondence to: Shan Zhao, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, U.S.A.
†E-mail: szhao@bama.ua.edu

Contract/grant sponsor: NSF; contract/grant numbers: DMS-0731503, DMS-0616704
Contract/grant sponsor: NSF; contract/grant numbers: IIS-0430987, DMS-0616704
Contract/grant sponsor: NIH; contract/grant number: CA127189-01

Copyright q 2008 John Wiley & Sons, Ltd.



MATCHED INTERFACE AND BOUNDARY (MIB) 1691

cost-efficiency for practical applications, numerous high-order FD methods have been developed in
the literature [5–12], including, standard, Euler sum, non-standard, compact, spectrally weighted,
and optimized FD schemes, to name only a few. Typically, these high-order FD methods use
wide stencils. Thus, to maintain a designed high-order accuracy, special numerical treatments are
required near boundaries where these FD kernels may refer to nodes outside the computational
domain. However, it is numerically challenging to construct a boundary closure method that is
not only highly accurate to maintain the designed level of accuracy, but also sufficiently robust
to handle various boundary conditions arisen in practical problems, and free of non-physical
spurious solutions. Indeed, the development of such boundary closure methods has attracted much
of research attention in scientific and engineering computations.

The boundary closure of high-order FD schemes with wide stencils can be carried out in
essentially two ways: one is to employ the information on a small fictitious domain outside the
boundary, while the other relies only on the information inside the boundary. Many different types
of boundary closure methods have been proposed in the literature in the framework of the latter
one. For example, one type of method builds boundary conditions into differentiation kernels [13],
so that both the differential equation and its boundary conditions can be satisfied simultaneously.
However, this technique may not be robust enough to handle general boundary conditions. In
another type, boundary conditions are imposed in the differential equation discretization by using
penalty-like terms [14, 15]. Apart from the construction of a delicate procedure to select a penalty
factor, the main problem of the penalty method is the possible loss of high accuracy, which
is at odds with the spirit of using high-order FD methods. If certain analytical features, such
as boundary layers and singularities, are known a priori near the boundary, such local features
could be included in numerical discretization to promote a more accurate simulation. To this end,
the flexible local approximation method (FLAME) [16–20] can be employed, which provides a
general framework for integrating analytical features into local FD approximations in a very simple
manner. For time-dependent problems, summation-by-parts operators have been constructed for
FD approximations of first and second derivatives [21, 22]. Effective boundary closure schemes
based on the simultaneous approximation term principle have been presented to maintain both
high-order accuracy and stability [21–23]. The most commonly used boundary closure method for
high-order FD approaches in this category is to employ progressively more asymmetric versions of
differential kernels near the boundary [24, 25]. In other words, one-sided FD (OFD) approximations
are employed near boundaries, which do not involve nodes outside the computational domain.
In practice, Chebyshev-type node clustering toward the ends of the domain is usually utilized to
permit high accuracy. This kind of non-uniform grid is also widely used in the spectral collocation
method. However, using the Chebyshev-type node clustering, the grid spacing h at the boundaries
is much smaller than the interior ones. Consequently, such node clustering generally induces
high conditional numbers in solving elliptic problems and severe stability constraints in solving
time-dependent problems.

At present, it is of considerable interest to study the other type of boundary closure methods,
i.e. the fictitious domain boundary method. Moreover, to avoid the difficulty associated with the
node clustering, only uniform grid will be considered in this work. The basic assumption of
the fictitious domain boundary closure methods is that for a given level of accuracy, fictitious
values outside the computational domain is obtained by the smooth extension (or extrapolation)
of the physical solution inside the computational domain. A treatment of boundary conditions
using fictitious values was proposed in the discrete singular convolution algorithm [26]. In such
an approach, the boundary conditions were discretized once to form a set of linear algebraic
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equations, from which the fictitious values could be determined [27]. As the number of required
fictitious points is usually larger than that of the equations given by the boundary condition, it is
assumed that there is a one-to-one correspondence between the inner nodes and the outer fictitious
nodes on the boundary [27]. This fictitious domain boundary method handles well many boundary
conditions [26–30]. However, it has difficulty to accommodate some complex boundary conditions,
such as the Robin condition or the free edge support, because under such occasions, the one-to-one
assumption might not be rigorously valid beyond the second-order accuracy.

Fornberg outlined a procedure for using fictitious grid points in FD schemes [31]. A detailed
scheme, called local adaptive differential quadrature method, was proposed for treating multiple
boundary conditions raised in high-order differential equations [32]. This boundary method admits
the same number of fictitious points outside a boundary as the number of non-trivial boundary
conditions, so that these fictitious points can be uniquely determined. It is capable of dealing
with various boundary conditions, including free edges. However, the number of fictitious points
determined from this boundary scheme is not sufficient for maintaining the translation invariance
property of the high-order central FD kernel. Therefore, non-symmetric differential kernels have
to be employed near boundaries [32]. In general, non-symmetric numerical differential kernels
are subject to spurious solutions in boundary value and eigenvalue problems. Such unphysical
solutions will further induce more constrained time stability conditions in evolution equations.
In contrast, symmetric differential kernels produce far fewer spurious solutions or no spurious
solution [33]. As a result, they have a better stability in dealing with evolution equations.

The objective of the present work is to construct arbitrarily high-order symmetric differential
kernels for solving partial differential equations with general boundary conditions. This is accom-
plished by introducing the matched interface and boundary (MIB) method for boundary closure.
Two criteria are used in the MIB scheme to determine fictitious values. First, the extrapolation
of fictitious values should be numerically realized by enforcing given boundary conditions (i.e.
a constrained extrapolation). Second, the number of fictitious values is determined by the order
of high-order central FD scheme used in the computational domain. Owing to the fact that the
number of fictitious values is usually larger than that of boundary conditions, we will repeatedly
use the given set of boundary conditions. Technically, this may lead to linearly dependent rows
and columns in the resulting matrix. We avoid this linear dependence by selecting a different
set of grid partition when the same set of boundary condition is repeatedly used. The proposed
MIB method maintains the collocation feature of central FD method over the entire computa-
tional domain without resorting to an optimization procedure as that of the FLAME [16–20].
The MIB method is originated from the hierarchical derivative matching method [34, 35], origi-
nally proposed for simulating electromagnetic wave scattering and propagation in inhomogeneous
media. For solving elliptic interface problems with curved interfaces, up to sixth-order MIB
schemes have been constructed [36] as a generalization of the immersed boundary method [37],
immerse interface method [38, 39], and ghost fluid method [40]. In fact, the MIB can be cast in
an interpolation formulation without referring to any fictitious value or node [41]. Therefore, the
purpose of using fictitious values is to make the MIB presentation clear. In the present work, we
reconstruct the MIB for implementing boundary conditions. We consider boundary value prob-
lems with arbitrary combinations of Dirichlet, Neumann, and Robin boundary conditions. We
also tackle eigenvalue problems, initial-boundary value problems, and high-order differential equa-
tions. Extensive numerical experiments are carried out to validate the proposed MIB method and
investigate its performance. The time stability of the MIB method is examined both theoretically
and numerically.
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The rest of this paper is organized as the follows. In Section 2, the numerical setting is laid
out. Several relevant boundary closure methods are reviewed and the formulation of the MIB
method for boundary treatments is introduced. Extensive numerical experiments are considered in
the following sections to validate the proposed MIB method. Comparisons with the FD methods
are given. Specifically, Section 3 is devoted to the solution of boundary value problems. Initial-
boundary value problems are studied in Section 4. A detailed stability analysis is carried out in
Section 4 as well. Solution of high-order differential equations is considered in Section 5. The
implementation of boundary conditions in the discrete singular convolution algorithm is discussed
in Section 6. Finally, a conclusion is given in Section 7.

2. THEORY AND ALGORITHM

It is well known that by employing a large stencil, the high-order central FD schemes encounter
difficulty in dealing with complex boundary conditions, because a translation invariant central FD
differentiation kernel will refer to grid points outside the domain, see Figure 1(a). This difficulty
could be bypassed via using one-sided differentiations near boundaries, giving rise to OFDmethods.
Two typical OFD methods will be investigated in this paper, see Figure 1(b) and (c). There is
no limit to consider other types of OFD matrix structures. However, such considerations will not
affect the essential conclusion of the present study.

In this section, a general numerical setting considered in this paper is presented. Several existing
boundary treatments for high-order FD are reviewed. Finally, the MIB method is developed to
facilitate high-order central FD schemes for various differential equations.

2.1. General numerical setting

Let us consider a regular computational domain �, where � is chosen as the unit interval [0,1],
the unit square [0,1]×[0,1], and the unit cube [0,1]×[0,1]×[0,1], respectively, in one (1D),
two (2D), and three dimensions (3D). As shown in Figure 2, the boundaries of the domain � are

N 0 M0 M N N2M0

(a) (b) (c)

Figure 1. Illustration of the matrix structures of high-order finite difference methods:
(a) central finite difference (FD); (b) one-sided finite difference type 1 (OFD1); and

(c) one-sided finite difference type 2 (OFD2).
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Figure 2. Illustration of boundary notations in 1D, 2D, and 3D.

denoted as the follows:

1D: 2D: 3D:
�1 :={x |x=0} �1 :={(x, y)|x=0,0�y�1} �1 :={(x, y, z)|0�x�1,0�y�1, z=0}
�2 :={x |x=1} �2 :={(x, y)|0�x�1, y=0} �2 :={(x, y, z)|x=0,0�y�1,0�z�1}

�3 :={(x, y)|x=1,0�y�1} �3 :={(x, y, z)|0�x�1, y=0,0�z�1}
�4 :={(x, y)|0�x�1, y=1} �4 :={(x, y, z)|x=1,0�y�1,0�z�1}

�5 :={(x, y, z)|0�x�1, y=1,0�z�1}
�6 :={(x, y, z)|0�x�1,0�y�1, z=1}

In this section, our primary concerns are three standard boundary conditions, i.e.

• Dirichlet boundary condition:

u=� j on � j (1)

• Neumann boundary condition:

�u
�n

=� j on � j (2)

• Robin boundary condition:

iku− �u
�n

=� j on � j (3)

even though many non-conventional boundary conditions are also discussed in this paper. Here �/�n
stands for the outward normal derivative, i=√−1, and � j are boundaries of the computational
domain �. Various different combinations of these three boundary conditions are considered,
including both homogeneous (i.e. � j =0) and inhomogeneous ones (i.e. � j is a non-zero constant
or a function).
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A uniform grid is employed throughout this paper, with N+1 grid nodes along each dimension.
The standard (2M)th-order central FD approximation is considered, in which the derivative of a
function is approximated by a weighted linear sum of the function values at 2M+1 nodes,

u(n)(x)=
M∑

j=−M
c(n)
j (x)u(x j ) (4)

where u(n)(x) is the nth-order derivative of u(x), and the translation invariant FD kernel c(n)
j (x)

is the nth-order derivative of the Lagrange interpolation kernel

c j (x)=
M∏

k=−M,k �= j

x−xk
x j −xk

(5)

The differentiation

c(n)
j (x)=

(
d

dx

)n

c j (x)

can be carried out analytically. For example, one has

c(1)
j (x) =

M∑
k=−M,k �= j

1

x j −xk

M∏
i=−M,i �=k, j

x−xi
x j −xi

(6)

c(2)
j (x) =

M∑
k,m=−M,k �= j,m �= j,m �=k

1

(x−xk)(x−xm)

M∏
i=−M,i �=k, j,m

x−xi
x j −xi

(7)

Recently, a recurrence relationship has been found for the nth-order FD kernel c(n)
j (x), so that the

corresponding FD weighing coefficients can be determined conveniently [42]. More recently, a fast
algorithm has been developed for determining weights in high-order FD formulas on arbitrarily
spaced grids [43]. All central FD weights employed in this paper are generated via this fast
algorithm.

2.2. Boundary closure methods for non-symmetric FD

In the high-order OFD method, in order to avoid the boundary closure difficulty of applying a
central FD kernel in a translation invariant manner, progressively more asymmetric FD kernels are
employed near boundaries. Thus, the OFD approximation is defined pointwisely

u(n)(xi )=
S2∑

j=S1

c(n)
i, j (xi )u(x j ) (8)

where S1 and S2 are the summation limits. OFD kernels can be given as

ci, j (x) =
S2∏

k=S1,k �= j

x−xk
x j −xk

(9)

c(n)
i, j (xi ) = dnci, j (x)

dxn

∣∣∣∣
x=xi

(10)
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In the present study, these OFD coefficients are generated by the fast algorithm [43]. We note that
if the summation (8) is global, i.e. S1=0 and S2=N , this actually gives a generalized differential
quadrature approximation [42]. In fact, non-uniform grids are used in the generalized differential
quadrature to stabilize the method [42].

Different choice of the summation limits S1 and S2 gives rise to different OFD matrix structure.
Two typical OFD methods shown in Figure 1(b) and (c) will be considered in this paper. For
both OFD methods, symmetric FD kernel with fixed bandwidth 2M+1 is used for interior nodes,
i.e. S1= i−M and S2= i+M , as long as it will not be beyond the domain. Here, M clearly
characterizes the order of accuracy of the FD approximation. Near the boundaries, asymmetric FD
kernels are employed. These two methods use different limits S1 and S2 for summation (8) at xi

• OFD1:

S1=max(i−M,0), S2=min(i+M,N ) (11)

• OFD2:

S1=max(min(i−M,N−2M),0), S2=min(max(2M, i+M),N ) (12)

where 0�i�N and 2M�N .
As shown in Figure 1, the matrix structure of OFD1 is the same as that of central FD. There

seems no reason to consider an OFD method with even shorter stencil at the boundaries. The
OFD2 method essentially aims to maintain the same order of accuracy throughout the domain by
using OFD kernels with fixed bandwidth 2M+1 near the boundaries, see Figure 1(c). Even longer
OFD kernels will not improve the order of convergence. We will thus only focus on these two
OFD methods in the present study. In general, the OFD2 method is more accurate than the OFD1
method, while the former is more likely to produce spurious modes than the latter [33].

At boundary nodes, the boundary conditions are discretized according to these OFD approxi-
mations. For example at x0, boundary conditions (1)–(3) are approximated as

• Dirichlet boundary condition:

u(x0)=� (13)

• Neumann boundary condition:

−
S2∑

j=S1

c(1)
0, j (x0)u(x j )=� (14)

• Robin boundary condition:

iku(x0)+
S2∑

j=S1

c(1)
0, j (x0)u(x j )=� (15)

The boundary discretization at xN can be similarly done. Consider the regular second-order finite
difference method, which in fact can be regarded as a special case of the OFD1 method with
M=1. We have the following boundary discretizations
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• Dirichlet boundary condition:

u(x0)=� (16)

• Neumann boundary condition:

u(x0)−u(x1)

h
=� (17)

• Robin boundary condition:

iku(x0)+ u(x1)−u(x0)

h
=� (18)

where h=1/N is the grid spacing.
There are different boundary closure methods to incorporate boundary algebraic equations into

the entire OFD discretization. We will consider the following two schemes:

• Boundary closure scheme 1: In scheme 1, algebraic equations attained from discretized
boundary conditions at x0 and xN is simply coupled with the algebraic equations attained from
the discretized differential equation at x1, . . . , xN−1. This straightforward boundary method
is often assumed in text books of numerical analysis for the regular FD method. However, it
may yield spurious solution in higher dimensions as shown in Reference [33].

• Boundary closure scheme 2: In scheme 2, one first solves two boundary algebraic equations
to determine u0 and uN . In particular, u0 and uN will be represented as linear combinations
of u1, . . . ,uN−1. Then when u0 and uN are referred in discretizing the differential equation
on inner nodes x1, . . . , xN−1, the representations of u0 and uN in terms of u1, . . . ,uN−1 will
be supplied, so that the final FD matrix will not involve u0 and uN . To illustrate the idea,
let us consider the regular FD method for the Robin boundary condition at the left boundary.
Based on the discretized boundary condition, one can solve from (18) that

u(x0)= h�−u(x1)

ikh−1
(19)

Then derivative involved in the differential equation, say u(2)(x) at x1, is approximated as

u(2)(x1)= u(x0)

h2
− 2u(x1)

h2
+ u(x2)

h2
= �

(ikh−1)h
−
(

1

(ikh−1)h2
+ 2

h2

)
u(x1)+ u(x2)

h2
(20)

while the standard central difference is used to approximate u(2)(x) for x2, . . . , xN−2. The
boundary treatment for the right end can be done similarly. Consequently, the dimension of
discrete matrix reduces from (N+1)×(N+1) to (N−1)×(N−1). This type of boundary
treatment is commonly used in the differential quadrature method [42].

We will focus only on the boundary closure schemes 1 and 2 in this paper, although we note that
there are other boundary closure methods for the OFD formulation [32]. For low-order differential
equations, the difference between numerical results of the boundary closure schemes 1 and 2 could
be very small. Nevertheless, there are higher order differential equations, such as those considered
in Section 5, that can be handled by scheme 2, but could not be directly resolved by scheme 1.
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2.3. Boundary closure methods for central FD schemes

Consider a (2M)th-order central FD approximation of an nth-order derivative, applied in a trans-
lation invariant manner

u(n)(xi )=
M∑

j=−M
C (n)

j u(xi+ j ), i=0,1,2, . . . ,N (21)

on a 1D uniform grid x−M< · · ·<x0=a<x1< · · ·<xN =b< · · ·<xN+M . Clearly, in order to carry
out these approximations, M fictitious points outside each boundary are required, see Figure 1(a).
As a consequence, the central challenge in the fictitious domain boundary treatments for the central
FD method is how to determine M unknown function values on fictitious points by using the given
boundary conditions at each boundary with the number of boundary conditions being far fewer
than M .

For some simple boundary conditions, this difficulty can be overcome by assuming that there
is a one-to-one correspondence between the inner nodes and the outer fictitious nodes on the
boundary [27]. For example, one assumes that for the left boundary

u(x− j )−u(x0)=a j [u(x j )−u(x0)] for j =1,2, . . . ,M (22)

where a j is the unknown representation coefficient to be determined from boundary conditions.
With assumption (22), the central FD approximation (21) at x0 can be modified as

u(n)(x0)=C (n)
0 u(x0)+

M∑
j=1

C (n)
j [(1+(−1)na j )u(x j )+(−1)n(1−a j )u(x0)] (23)

For a class of boundary conditions,

u(x0)=0,
N∑

n=1
Knu

(n)(x0)=0 (24)

where Kn are given coefficients, the corresponding discretized boundary equation in the central
FD is

M∑
j=1

(
N∑

n=1
KnC

(n)
j (1+(−1)na j )

)
u(x j )=0 (25)

One way to satisfy Equation (25) is to set

N∑
n=1

KnC
(n)
j (1+(−1)na j )=0 for j =1,2, . . . ,M

from which we have

a j =
∑N

n=1 KnC
(n)
j

−∑N
n=1 Kn(−1)nC (n)

j

for j =1,2, . . . ,M (26)

Such a fictitious domain boundary treatment has been frequently used in the discrete singular
convolution algorithm [26, 27, 44] to successfully handle many boundary conditions, such as the
periodic condition [26], the asymptotic Dirichlet condition [30], the perfect electric and magnetic
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wall conditions in electromagnetic [28, 29], the simply supported, clamped and transversely
supported edges in vibration analysis [27], etc. For example, at a clamped edge, the boundary
conditions are given as

u(x0)=0, u(1)(x0)=0 (27)

It can be derived from Equation (26) that one should take a j =1. This is the so called symmetric
extension [26]. At a simply supported edge, boundary conditions are given as

u(x0)=0, u(2)(x0)=0 (28)

These conditions can be imposed by choosing a j =−1. This is the so called anti-symmetric
extension [26].

However, for more complex boundary conditions, such as the Robin condition or the free edge
support, the one-to-one assumption (22) might not be rigorously valid or can only be satisfied up to
second-order accuracy. Under such an occasion, this method cannot maintain high-order accuracy
at boundaries.

2.4. The MIB method

It is of great interest in this subsection to construct a systematic and robust boundary method, the
MIB method, to accurately determine M fictitious values. We illustrate the idea by considering
the Robin boundary condition (3) in 1D

iku+ux =� on �1 (29)

With only one boundary condition available, it appears impossible to determine function values
on M fictitious points, as M�1. To overcome this difficulty, the MIB method will generate
fictitious values iteratively by repeatedly matching the boundary condition across the boundary.
Referring to Figure 3, we denote fictitious values on M fictitious points outside the domain as
fi for i=1,2, . . . ,M , while function values of L+1 grid points inside the domain as u j for
j =0,1,2, . . . , L . We seek for a high-order approach to represent fi in terms of u j by means of
discretizing the boundary condition (29).

At the first step, since only one boundary condition is available, one can only determine one
fictitious point, i.e. f1. In order to achieve high-order accuracy for the boundary implementation,
OFD approximations are considered, which involve L+1 grid points on the inner side of the
boundary; see Figure 4. Thus, the boundary condition (29) is approximated as

iku0+C (1)
2,1 f1+

L+2∑
i=2

C (1)
2,i ui−2=� (30)

where C (1)
2,i are OFD weights to approximate first derivative at u0 by using f1,u0,u1, . . . ,uL . Note

that the first subscript of C (1)
2,i is 2, because u0 is the second point in the present stencil. The

LuMf f2 f u u u0 11 2

x=a

Figure 3. Illustration of fictitious points near the left boundary.
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x=a

Step L+1:

Step M:
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Step 1:

Step 2:

x=a

x=a

x=a

Figure 4. Illustration of the iterative procedure.

only unknown f1 in Equation (30) can be solved in terms of ui for i=0, . . . , L and �. Here,
we note the flexibility of choosing the total number of terms used by varying L in the finite
difference approximation. While the length of L determines the level of accuracy, it can be either
larger or smaller than M . For time-independent problems, we usually choose 7�L�11 to achieve
high accuracy. Nevertheless, for unsteady problems, a very large L may render the MIB method
unstable. This will be discussed in detail later.

To gain a sufficient number of function values at fictitious points, we use an iterative procedure as
introduced in electromagnetic interface problems. By treating the previous calculated fictitious point
as knowns, we seek for determining one more fictitious point as shown in Figure 4. Numerically, this
is accomplished by discretizing the same boundary condition again, but with one new fictitious point

iku0+C (1)
3,1 f2+C (1)

3,2 f1+
L+3∑
i=3

C (1)
3,i ui−3=� (31)

where C (1)
3,i are OFD weights to approximate first derivative at u0 by using f2, f1,u0,u1, . . . ,uL .

Note that the first subscript of C (1)
3,i is 3, because u0 is the third point in the present stencil.

The grid partition considered in (31) still has L+1 inner nodes, but two fictitious points outside
the boundary. Thus, this partition is independent of the previous one. Since f1 has already been
determined from Equation (30), f2 can be solved from (31). Through such an iterative procedure,
the requested M fictitious points can be efficiently determined if M�L .
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If M>L , more iterative steps are required. Through this procedure, at step L , one can determine
fi for i=1,2, . . . , L . Now, at step L+1, central FD weights are employed so that boundary
condition (29) is discretized as

iku0+
L+1∑
i=1

C (1)
L+2,i fL+2−i +

2L+3∑
i=L+2

C (1)
L+2,i ui−L−2=� (32)

where C (1)
L+2,i are central difference weights to approximate first derivative at u0 by using

fL+1, . . . , f1,u0,u1, . . . ,uL+1. Note that u0 is the (L+2)th point in the present stencil. In other
words, from step L+1 onward, we add both one more fictitious point and one more grid point
at each iterative step in the MIB iteration, as shown in Figure 4. This is because central finite
difference approximations have higher accuracy than OFD approximations. In Equation (32), one
still has only one unknown, i.e. fL+1, which can be easily solved. One can repeat this procedure
as many times as necessary, until the desired M fictitious points are all determined; see Figure 4.

In order to apply the MIB method to a boundary value or eigenvalue problem in which u j is
not readily available, a fundamental representation is essential for an implicit formulation

fi =Ri ·U for i=1,2, . . . ,M (33)

where vector U=(u0, . . . ,uL ,�) and the elements of vector Ri are the representation coefficients
of fi with respect to U. With this representation, instead of solving fi , one needs to determine Ri .
The representation coefficients Ri are determined from essentially the same procedure presented
above for fi . The only difference is that now one boundary condition is discretized and coupled
into L+2 algebraic equations, since a fictitious value fi is represented via L+2 coefficients,
which are the L+2 elements of Ri .

To better illustrate the MIB approach, we next present a detailed MIB formulation for a fourth-
order central FD scheme with M=2 and L=3. Consequently, U=(u0, . . . ,u3,�). By denoting Ii

as a unit vector with its i th element being 1 and other L+1 elements being 0, we have

ui =Ii+1 ·U for i=0,1, . . . , L , �=IL+2 ·U (34)

By using representation (33) and (34), Equation (30) is given as

ikI1+C (1)
2,1R

1+
5∑

i=2
C (1)
2,i I

i−1=I5 (35)

in which the common factor U has been canceled. Thus, the fictitious value f1 can be solved as

R1= 1

C (1)
2,1

(
I5− ikI1−

5∑
i=2

C (1)
2,i I

i−1

)
(36)

Similarly, we have from the second step

ikI1+C (1)
3,1R

2+C (1)
3,2R

1+
6∑

i=3
C (1)
3,i I

i−2=I5 (37)

R2= 1

C (1)
3,1

(
I5− ikI1−C (1)

3,2R
1−

6∑
i=3

C (1)
3,i I

i−2

)
(38)
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Thus, representation coefficients read

R1=(− 10
3 +4hki,6,−2, 13 ,−4h), R2=(− 80

3 +20hki,40,−15, 83 ,−20h)

where h is the grid spacing. With representations for f1 and f2, the fourth-order central FD
approximation at x0 and x1 should be correspondingly modified. For example, for the second
derivative, we have

u(2)(x1) = 1

h2

(
− 1

12
f1+ 4

3
u(x0)− 5

2
u(x1)+ 4

3
u(x2)− 1

12
u(x3)

)
(39)

u(2)(x0) = 1

h2

(
− 1

12
f2+ 4

3
f1− 5

2
u(x0)+ 4

3
u(x1)− 1

12
u(x2)

)
(40)

The MIB treatment of other boundary conditions can be similarly carried out. For the Dirichlet
boundary condition (1), one way is to derive a new boundary condition based on the governing
equation. This will be illustrated later in numerical studies. Another way is to directly impose the
boundary condition by using an interpolation scheme that avoids the boundary point. An advantage
of representation (33) is that fictitious point coefficients Ri are independent of the boundary data �,
although fi depends on �. More precisely, it is sufficient in the MIB method to determine only one
set of fictitious point coefficients Ri for one boundary condition, even when � is a spatial function
along the boundary or even time-dependent. Moreover, we note that in the MIB method, boundary
conditions are enforced systematically so that it can achieve arbitrarily high orders in principle.
Finally, we note boundary conditions are satisfied in fictitious point representations, which will be
incorporated into the central FD approximation during the differential equation discretization. In
this sense, the present MIB method is equivalent to the boundary closure scheme 2 of the OFD
approaches considered in Section 2.2.

3. BOUNDARY VALUE PROBLEMS

In this section and the following ones, we examine the usefulness of the MIB method by testing
its accuracy, convergence, and efficiency. For a comparison, regular FD and high-order OFD
approaches (see Figure 1) are also considered. A uniform grid is employed in all cases, with N+1
being the mesh size along each direction. The bandwidth of the central FD is 2M+1, which is the
same as that of OFD for interior node. Standard algebraic iterative solvers are utilized in boundary
value problems. Denoting uh as the numerical solution, we use the following measures to estimate
errors in numerical examples:

L∞ = max |u−uh |
max |u| , L2=

√√√√∑N
i=0 |u−uh |2∑N

i=0 |u|2

Since accommodating boundary conditions is one of the major concerns for accurately solving
elliptic boundary value problems [45–47], we consider first the application of the MIB to the
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Poisson equation and the Helmholtz equation. We will study the order of convergence and cost-
efficiency of the MIB method. For this purpose, several boundary value problems with analytical
solutions are considered in 1D, 2D, and 3D.

3.1. 1D boundary value problem

We first consider a 1D boundary value problems of the Helmholtz equation.

• Example 1 [48–51]:
uxx +k2u = 1 in �

u = 0 on �1 (41)

iku−ux = 0 on �2

The analytical solution is

u= 1

k2
((1−cos(kx)−sin(k)sin(kx))+ i(cos(k)−1)sin(kx))

The interval is chosen as �=[0,1]. In order to demonstrate the high accuracy of the MIB approach,
a highly oscillatory solution with k=20 is studied, see Figure 5.

The MIB treatment of the Robin boundary condition is carried out as discussed in Section 2,
while that of the Dirichlet boundary condition involves a little extra work. We derive a new boundary
condition containing derivatives based on the Dirichlet boundary condition and the governing
equation. In particular, at x=0, we have both u(0)=0 and uxx (0)+k2u(0)=1, so that obviously

uxx =1 on �1

0 0.2 0.4 0.6 0.8 1

0

1

2

–2

–1

3

4

5

6
x 10

x

u

–3

Figure 5. Analytical and numerical solutions of Example 1 in Section 3.1 for k=20 and N =40. Here
solid and dashed lines denote, respectively, the real and imaginary parts of the analytical solution, while

stars stand for the MIB result.
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Table I. Numerical convergence tests of Example 1 in Section 3.1 with k=25.

L2 L∞
Scheme M Result N =20 N =40 N =80 N =20 N =40 N =80

FD 1 Error 6.81 (−1) 9.30 (−2) 6.44 (−2) 8.24 (−1) 1.38 (−1) 7.65 (−2)
Order 2.87 0.53 2.58 0.85

OFD1 2 Error 7.31 (−2) 1.38 (−2) 1.91 (−3) 1.06 (−1) 1.58 (−2) 1.92 (−3)
Order 2.40 2.85 2.75 3.04

4 Error 4.46 (−1) 1.23 (−2) 3.16 (−4) 4.09 (−1) 1.04 (−2) 2.73 (−4)
Order 5.18 5.28 5.29 5.26

6 Error 4.50 (−1) 5.25 (−3) 3.94 (−5) 3.98 (−1) 4.42 (−3) 3.40 (−5)
Order 6.42 7.06 6.49 7.02

8 Error 1.06 (−1) 1.80 (−3) 4.30 (−6) 9.39 (−2) 1.53 (−3) 3.72 (−6)
Order 5.88 8.71 5.94 8.69

OFD2 2 Error 5.64 (−1) 3.31 (−2) 1.40 (−3) 5.83 (−1) 3.24 (−2) 1.48 (−3)
Order 4.09 4.57 4.17 4.46

4 Error 4.68 (−1) 3.04 (−3) 1.54 (−5) 4.38 (−1) 2.59 (−3) 1.34 (−5)
Order 7.27 7.63 7.40 7.60

6 Error 1.59 (−0) 1.93 (−4) 1.44 (−7) 1.39 (−0) 1.65 (−4) 1.24 (−7)
Order 13.01 10.39 13.04 10.38

8 Error 1.37 (−1) 7.07 (−5) 9.06 (−10) 1.26 (−1) 5.99 (−5) 7.83 (−10)
Order 10.92 16.25 11.03 16.22

MIB 1 Error 7.81 (−1) 1.40 (−1) 3.43 (−2) 7.98 (−1) 1.90 (−1) 4.80 (−2)
Order 2.49 2.02 2.07 1.99

2 Error 7.64 (−2) 5.81 (−3) 4.07 (−4) 1.22 (−1) 8.15 (−3) 5.75 (−4)
Order 3.72 3.84 3.91 3.82

4 Error 1.05 (−2) 4.01 (−5) 1.20 (−7) 1.17 (−2) 4.80 (−5) 1.65 (−7)
Order 8.03 8.39 7.93 8.18

6 Error 2.08 (−2) 1.20 (−6) 2.47 (−10) 2.02 (−2) 1.12 (−6) 2.39 (−10)
Order 14.08 12.25 14.14 12.19

8 Error 3.94 (−3) 1.30 (−6) 1.60 (−11) 3.55 (−3) 1.11 (−6) 1.34 (−11)
Order 11.57 16.30 11.65 16.33

In the MIB method, L is set to be 1, 3, 10, 13, and 14, respectively, for M=1, 2, 4, 6, and 8.

This is the boundary condition finally being used in the MIB modeling on �1. By taking M=6
and L=12, MIB results are also depicted in Figure 5. It is clear that our numerical results agree
with the analytical solution very well.

We next quantitatively examine the numerical orders of the MIB, the regular FD, the OFD1, and
the OFD2 methods in Table I. Based on successive mesh refinement, the numerically displayed
order of convergence is calculated and reported. In the present study, the boundary closure scheme 2
of Section 2.2 is employed in the regular FD method and two OFD approaches. The boundary
closure scheme 1 has been found to yield almost the same results for this 1D problem.

We note that the regular FDmethod can be regarded as the OFD1 method with M=1. Essentially,
the forward or backward difference is used to discretize boundary conditions. These approximations
are of the first order of accuracy. It can be observed from Table I that the numerical order of the
entire FD approximation is also about first order for problems involving Robin boundary condition.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:1690–1730
DOI: 10.1002/nme



MATCHED INTERFACE AND BOUNDARY (MIB) 1705

On the other hand, in the MIB method, by taking M= L=1, the corresponding central FD method
has exactly the same bandwidth as the regular FD method. Nevertheless, via the MIB boundary
treatment, such a central FD method attains the second order of accuracy, i.e. the theoretical order.

We next examine high-order FD methods for several M values in Table I. For the OFD1 method,
by using M+1 nodes at the boundaries, the theoretical order is only M th order. Thus, it can be
seen from the table that the numerically tested orders usually are slightly larger than M , while
in general the convergence rate of the OFD1 is merely M th order. On the other hand, the OFD2
method makes use of 2M+1 nodes to approximate boundary conditions such that its theoretical
order is maintained as (2M)th order throughout the domain. This is numerically confirmed. By
using the MIB boundary treatment, the central FD stencil is applied in a translation invariant
manner, so that its theoretical order is guaranteed to be (2M)th order. This is evident in Table I.
Furthermore, it can be observed that the MIB method is about 100 times more accurate than the
OFD2 method, although both methods attain (2M)th order of convergence.

3.2. 2D boundary value problems

We then consider two 2D boundary value problems of the Helmholtz equation.

• Example 1 [48, 49]:
�u+k2u = 0 in �

iku+ �u
�n

= i(k−k1)e
ik2y on �1

iku+ �u
�n

= i(k−k2)e
ik1x on �2 (42)

iku+ �u
�n

= i(k+k1)e
i(k1+k2y) on �3

iku+ �u
�n

= i(k+k2)e
i(k1x+k2) on �4

where (k1,k2)=(k cos �,k sin �). The analytical solution is u(x, y)=ei(k1x+k2y).
• Example 2:

�u+k2u = (4+2ki)(x2+ y2)+(2k2+k3i)x2y2+(k2+k3i)xy+k3i in �

�u
�x

= ik1 e
ik2y+(1+ki)y on �1

iku− �u
�n

= i(k+k2)e
ik1x +(1+ki)x−k2 on �2 (43)

iku− �u
�n

= i(k−k1)e
i(k1+k2y)−(4+k2)y2−(1+k2)y−k2 on �3

u = ei(k1x+k2)+(2+ki)x2+(1+ki)x+ki on �4

where (k1,k2)=(k cos�,k sin�). The analytical solution is u(x, y)=ei(k1x+k2y)+(2+ki)x2y2+
(1+ki)xy+ki .
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In both examples, k1 and k2 is the wavenumber in the x- and y-directions, respectively, � is the
wave direction, and �=[0,1]×[0,1].

Arbitrary combinations of three types of standard boundary conditions are considered in these
two 2D examples. Again, new boundary conditions are derived for the Dirichlet boundary conditions
in advance. For example, in Example 2, we have u=ei(k1x+k2)+(2+ki)x2+(1+ki)x+ki on �4
so that

�2u
�x2

∣∣∣∣∣
y=1

= �2

�x2
u

∣∣∣∣∣
y=1

= �2

�x2
[ei(k1x+k2)+(2+ki)x2+(1+ki)x+ki]=−k21 e

i(k1x+k2)+(4+2ki)

Therefore, the new boundary condition used in the MIB is given as

�2u
�y2

∣∣∣∣∣
y=1

= �u|y=1−uxx |y=1

= [(4+2ki)(x2+ y2)+(2k2+k3i)x2y2+(k2+k3i)xy+k3i]y=1−k2u|y=1

−[−k21 e
i(k1x+k2)+(4+2ki)]

= −k22 e
i(k1x+k2)+(4+2ki)x2

It is mentioned previously that one advantage of the MIB treatment is that fictitious coefficients
in representation (33) are independent of boundary data �i . This advantage becomes more evident
in 2D studies. For example, on �1 of Example 1, �1 is a function of y, so that, precisely the
boundary condition at a different y node is different. However, by using representation (33), one
needs only conduct one MIB scheme, i.e. determines representation coefficients once, for entire
boundary points on �1. Thus, the MIB treatment is carried out for a total of four times for a 2D
computation. Moreover, usually, the computing time of the MIB treatment is very small compared
with the CPU time required by the iterative solver. Therefore, the proposed MIB method is a very
efficient approach to deal with arbitrary boundary conditions.

By setting the wave angle �=�/8 and the wave number k=20, Figure 6 shows the mesh plots
of the MIB solutions with N 2=402, M=6, and L=12. These results are in fact indistinguishable
from the analytical solution. On the other hand, it is known that the approximation error of a
numerical scheme usually depends on the wave direction � [49]. Here, we study this dependence
for the MIB method by considering Example 1. By using k=20, N 2=402, M=6, and L=12, the
numerical errors of the MIB approach for different � are depicted in Figure 7. For both L2 and L∞
errors, a rotational symmetry with respect to �=�/4 is observed. This boundary value problem
actually has the same symmetry property. As noticed in [49], this symmetry property in numerical
errors is because the quality of the MIB approximation depends on the wavenumber max(k1,k2),
instead of k or �. Thus, the minimal numerical errors appear at �=�/4, where max(k1,k2) takes
the minimum. In view of the same pattern in the present numerical error and that in the literature
[49], one may conclude that the MIB method is very robust to different wave direction �.

We next examine the order of convergence, see Table II. The boundary closure scheme 2 of
Section 2.2 is employed in the FD and two OFD approaches. Similar to 1D cases, the convergence
rate of the regular FD is again about first order, while that of the OFD1 and the OFD2 is,
respectively, M th and (2M)th order. However, for both OFD approaches, when M is large, the
standard iterative algebraic solver, i.e. the preconditioned biconjugate gradient method, fails to
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Figure 6. Numerical solutions of two 2D examples in Section 3.2. (a) Example 1, real part; (b) Example 1,
imaginary part; (c) Example 2, real part; and (d) Example 2, imaginary part.
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Table II. Numerical convergence tests of Example 1 in Section 3.2 with k=25.

L2 L∞
Scheme M Result N2=202 N2=402 N2=802 N2=202 N2=402 N2=802

FD 1 Error 6.61 (−1) 1.68 (−1) 7.37 (−2) 2.08 (−0) 3.96 (−1) 1.84 (−1)
Order 1.98 1.19 2.39 1.11

OFD1 2 Error 2.49 (−1) 6.53 (−2) 1.67 (−2) 5.62 (−1) 1.44 (−1) 3.75 (−2)
Order 1.93 1.96 1.96 1.94

4 Error 3.56 (−1) 1.57 (−2) 8.78 (−4) 8.61 (−1) 3.61 (−2) 1.97 (−3)
Order 4.51 4.16 4.57 4.20

6 Error 3.22 (−1) 3.78 (−3) 5.29 (−5) 5.95 (−1) 8.49 (−3) 1.19 (−4)
Order 6.41 6.16 6.13 6.16

8 Error 2.37 (−1) 2.09 (−3) ∞ 5.21 (−1) 3.80 (−3) ∞
Order 6.83 7.10

OFD2 2 Error 3.66 (−1) 2.78 (−2) 1.71 (−3) 8.34 (−1) 6.40 (−2) 3.96 (−3)
Order 3.72 4.02 3.70 4.02

4 Error 3.35 (−1) 2.25 (−3) ∞ 7.22 (−1) 4.66 (−3) ∞
Order 7.22 6.43

MIB 1 Error 7.82 (−1) 1.77 (−1) 4.29 (−2) 2.05 (−0) 4.44 (−1) 1.05 (−1)
Order 2.14 2.04 2.21 2.07

2 Error 9.32 (−1) 6.67 (−3) 4.47 (−4) 2.55 (−1) 1.77 (−2) 1.17 (−3)
Order 3.81 3.90 3.85 3.92

4 Error 1.17 (−2) 2.54 (−5) 8.92 (−8) 2.72 (−2) 6.44 (−5) 2.22 (−7)
Order 8.85 8.15 8.72 8.18

6 Error 1.11 (−2) 2.15 (−6) 3.06 (−10) 2.47 (−2) 4.62 (−6) 6.83 (−10)
Order 12.33 12.78 12.39 12.72

8 Error 1.10 (−2) 5.82 (−7) 2.33 (−11) 2.23 (−2) 1.21 (−7) 1.67 (−10)
Order 14.20 14.61 14.17 12.83

In the MIB method, L is set to be 1, 3, 10, 12, and 14, respectively, for M=1, 2, 4, 6, and 8.

converge based on the dense mesh N 2=802. Error for such a case is marked with ∞ in Table II.
For the OFD2 method, when M is even larger, the convergence stops at smaller N values 20
and 40. It is interesting to note that the convergence of both OFD approaches begins to fail at
the same place, i.e. when there are 9 nodes involved in the complete one-sided approximation
at the boundary (M=8 in the OFD1 and M=4 in the OFD2). The similar situation has been
encountered in Reference [33], in which both OFD approaches begin to generate spurious modes
by using one-sided approximations of the same length. Moreover, it is shown in Reference [33]
that the production of the spurious modes in the OFD approaches is due to the use of severe
one-sided approximations. The converging failure in the present study is believed to be due
to the same cause, i.e. by using a severe one-sided approximation, the OFD discrete matrix
becomes almost ill-conditioned so that the algebraic solver fails to converge. The convergence
problem is not observed in the 1D, probably because the matrix dimension is small in 1D.
Thus, the present results indicate that the problem of ill-condition becomes more serious and
challenging for higher dimensional cases. Furthermore, a direct consequence of such a converging
failure is that both OFD approaches can at most deliver about eighth order of accuracy in 2D
cases.
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Table III. Numerical convergence tests of Example 2 in Section 3.2 with k=30.

L2 L∞
Scheme M Result N2=202 N2=402 N2=802 N2=202 N2=402 N2=802

MIB 1 Error 3.94 (−2) 7.81 (−3) 1.92 (−3) 5.69 (−2) 1.15 (−2) 2.75 (−3)
Order 2.33 2.02 2.30 2.07

2 Error 5.13 (−3) 3.91 (−4) 2.71 (−5) 7.07 (−3) 5.34 (−4) 3.73 (−5)
Order 3.71 3.85 3.73 3.84

4 Error 1.95 (−3) 4.88 (−6) 1.41 (−8) 2.13 (−3) 5.76 (−6) 1.42 (−8)
Order 8.65 8.43 8.53 8.67

6 Error 2.81 (−3) 8.04 (−7) 1.58 (−10) 3.18 (−3) 8.34 (−7) 1.90 (−10)
Order 11.77 12.32 11.90 12.10

8 Error 4.39 (−3) 7.34 (−7) 3.94 (−11) 5.06 (−3) 8.85 (−7) 4.19 (−11)
Order 12.55 14.18 12.48 14.37

In the MIB method, L is set to be 1, 3, 9, 12, and 13, respectively, for M=1, 2, 4, 6, and 8.

In contrast, the MIB method still maintains its order of accuracy in the 2D. The numerically
tested orders of the MIB method for Examples 1 and 2 are listed, respectively, in Tables II and
III. It is clear from both tables that the MIB method attains the theoretical order of accuracy, i.e.
(2M)th order for M=1, 2, 4, and 6. When M=8, certain numerical precision limit is reached so
that it finally achieves about 14th order of accuracy. The MIB method is much more accurate than
other high-order FD methods.

It is well known that the main merit of a high-order method in comparing with a low-order one
is the cost-efficiency. The ultimate goal of developing high-order methods in the field of scientific
computing is to save computational time when a high accuracy is required and the domain is
quite regular. We next demonstrate the efficiency of our high-order method versus the regular FD
method widely used in engineering and scientific computing. We consider Example 1 in Table IV
to test the cost-efficiency. It is known that if the boundary conditions of the 2D Poisson equation
are always of Dirichlet or Neumann type, a fast Poisson solver based on the fast sine or cosine
transform can be utilized to solve the FD discretization matrix of the 2D boundary value problem
in essentially O(N log N ) operations. However, for the present test problems with complicated
boundary conditions, such as the Robin boundary condition, such a fast solver is not trivially
available. Thus, in the present study, the standard preconditioned biconjugate gradient solver is
used in both the FD and MIB methods.

It can be seen from Table IV that by using an extremely coarse mesh N 2=102, the 16th order
MIB method delivers an extremely high accuracy, L2=1.29 (−12) and L∞ =1.54 (−12), while
only 0.11 s CPU time is consumed. In Table IV, both the boundary closure scheme 1 and 2 of
Section 2.2 are considered for the FD method. It can be seen that the numerical errors of the FD
approaches with both boundary closure schemes are almost identical up to the successive mesh
refinement of N =40. However, the FD with the boundary closure scheme 1 of Section 2.2 breaks
down when N 2=802, while the boundary closure scheme 2 is free of such issues. The same
problem has been observed in Reference [33]. In particular, the boundary closure scheme 1 yields
spectral pollution spurious modes in the 2D, but scheme 2 does not.

We finally note the order of convergence of the FD method with both boundary closure schemes
is just first order. Thus, by using an extremely dense mesh N 2=12802, the accuracy of the FD
method is just about 10−4. Further mesh refinement would be impractical. Based on the convergence
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Table IV. Numerical efficiency tests of Example 1 in Section 3.2 with k=1.

L2 L∞ CPU

Scheme N2 Error Order Error Order Sec. Ratio

MIB 102 1.29 (−12) 1.54 (−12) 0.11

FD with boundary 102 2.35 (−2) 3.09 (−2) 0.03
closure scheme 1 202 1.17 (−2) 1.00 1.55 (−2) 0.99 0.11 3.67

402 5.84 (−3) 1.00 7.76 (−3) 1.00 1.03 9.36
802 ∞ ∞ ∞

FD with boundary 102 2.36 (−2) 2.97 (−2) 0.03
closure scheme 2 202 1.17 (−2) 1.01 1.52 (−2) 0.97 0.10 3.33

402 5.85 (−3) 1.00 7.69 (−3) 0.98 0.54 5.40
802 2.92 (−3) 1.00 3.87 (−3) 0.99 4.45 8.24
1602 1.46 (−3) 1.00 1.94 (−3) 1.00 37.92 8.52
3202 7.29 (−4) 1.00 9.71 (−4) 1.00 445.37 11.74
6402 3.65 (−4) 1.00 4.86 (−4) 1.00 7715.82 17.32
12802 1.82 (−4) 1.00 2.43 (−4) 1.00 90869.82 11.78

...
...

...
...

...
...

...

1717986918402 1.36 (−12) 1.00 1.81 (−12) 1.00 1.25 (+34) 12.00

Both boundary closure scheme 1 and 2 of Section 2.2 are considered for the FD method. The 16th order MIB
method with M=8 and L=10 is used. CPU time in second is reported.

pattern of the regular FD method, it can be easily estimated that to achieve the similar level of
accuracy as the MIB method, one has to further refine the mesh 27 times. In other words, an
intractable mesh size N 2=1717986918402 is to be required for the FD method to give L2=
1.36 (−12) and L∞ =1.81 (−12), as listed in Table IV. On the other hand, the CPU increment
ratio is also listed in Table IV. By roughly assuming that for each mesh refinement the CPU time
would increase by 12 times, the corresponding FD computational time after 27 refinements is
estimated to be 1.25 (+34) s. Therefore, the 16th-order MIB method could be 1.13 (+35) times
faster than the widely used FD method in the present 2D problem.

3.3. 3D boundary value problems

We finally consider one 3D boundary value problem.

• Example 1:

�u+k2u = 2y2z2+2x2y2+2z2x2+k2x2y2z2+2k2xyz+k2 in �=[0,1]×[0,1]×[0,1]
�u
�z

= ik3 e
i(k1x+k2y)+2xy on �1

u = ei(k2y+k3z)+1 on �2
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iku− �u
�n

= i(k+k2)e
i(k1x+k3z)+2xz+ki on �3 (44)

�u
�x

= ik1e
i(k1+k2y+k3z)+2y2z2+2yz on �4

u = ei(k1x+k2+k3z)+x2z2+2xz+1 on �5

iku− �u
�n

= i(k−k3)e
i(k1x+k2+k3)+(ki−2)x2y2+(2ki−2)xy+ki on �6

where

(k1,k2,k3)=
(

k√
2
,
k√
3
,
k√
6

)

The analytical solution is u(x, y)=ei(k1x+k2y+k3z)+(xyz+1)2.

Similarly, new conditions need to be derived for the Dirichlet boundaries. For example, on �2,
one attains

�2u
�y2

∣∣∣∣∣
x=0

= �2

�y2
u

∣∣∣∣∣
x=0

=−k22 e
i(k2y+k3z),

�2u
�z2

∣∣∣∣∣
x=0

= �2

�z2
u

∣∣∣∣∣
x=0

=−k23 e
i(k2y+k3z)

Therefore, the new boundary condition used in the MIB is given as

�2u
�x2

∣∣∣∣∣
x=0

=�u|x=0−uyy |x=0−uzz|x=0=−k21 e
i(k2y+k3z)+2y2z2

Similar to 2D cases, the regular FD method is still of the first order of accuracy for the present
3D problem, while both high-order OFD approaches break down when M is large. These results are
omitted to save space. Nevertheless, the MIB method still attains the theoretical order of accuracy
as can be observed in Table V. Slice plots of the MIB solution at z=0.5 are given in Figure 8.

Table V. Numerical convergence tests of Example 1 in Section 3.3 with k=12.

L2 L∞
Scheme M Result N3=123 N3=243 N3=123 N3=243

MIB 1 Error 1.28 (−1) 2.67 (−2) 2.12 (−1) 4.33 (−2)
Order 2.26 2.29

2 Error 5.19 (−3) 3.85 (−4) 1.11 (−2) 7.82 (−4)
Order 3.75 3.83

4 Error 1.08 (−4) 2.06 (−7) 1.76 (−4) 2.96 (−7)
Order 9.04 9.22

8 Error 2.38 (−5) 3.45 (−9) 2.71 (−5) 4.52 (−9)
Order 12.75 12.55

In the MIB method, L is set to be 1, 3, 9, and 12, respectively, for M=1, 2, 4, and 8.
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Figure 8. Slice plots at z=0.5 of the numerical solution in Example 1 of Section 3.3 with k=20 and
N 3=403. In the MIB method, we set M=6 and L=12: (a) real part and (b) imaginary part.

4. INITIAL-BOUNDARY VALUE PROBLEMS AND STABILITY ANALYSIS

We next consider the application of the MIB treatment to time-dependent boundary conditions
involved in the unsteady problems. The time integration stability of the MIB discretization is
investigated thoroughly by considering the following two 1D model problems.

• Example 1 [52]:
�u
�t

+ �u
�x

= 0, 0�x�1, t�0

u(x,0) = sin(2�x) (45)

u(0, t) = sin(2�(−t)), u(1, t)=sin(2�(1− t))

The analytical solution is u(x, t)=sin(2�(x− t)).
• Example 2:

�u
�t

= �2u
�x2

, 0�x�1, t�0

u(x,0) =C sin x (46)

u(0, t) = 0,
�u
�x

∣∣∣∣
x=1

=C cos(1)e−t

where C=e10. The analytical solution is u(x, t)=C sin(x)e−t .

In both problems, we first derive new boundary conditions at the Dirichlet boundaries. For
example, at the left end of Example 1, the MIB boundary procedure is carried out based on
�u/�x=−cos(2�t). After MIB spatial discretization, both model problems can be rewritten into
the following semi-discrete form:

d

dt
U = AU+S(t) (47)
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where UT=[u0,u1, . . . ,uN ] is the solution vector, A is the MIB spatial discretization matrix, and
S(t) is a source term. We note that although the present boundary conditions are time-dependent,
the MIB representation coefficients of fictitious points are actually only needed to be calculated
once to construct A. The constant matrix A can then be used at all time steps. The changing part
in boundary conditions can be simply accounted in terms of the source term S(t). Therefore, the
proposed MIB method is very efficient in handling time-dependent boundary conditions.

Since the boundary data of two model problems are time-dependent, special boundary treatments
are required in the time advancement schemes to maintain the overall formal accuracy [52]. In
the present study, an advanced strong stability-preserving (SSP) Runge–Kutta method [53–56]
is employed to solve Equation (47). The SSP methods are designed to maintain strong stability
in certain norm, such as the total variation norm, as the first-order forward Euler scheme, while
achieving higher order accuracy in time [53–55]. The extension of SSP methods to solve an
autonomous system, such as Equation (47), has been introduced in [56]. By denoting Un =U (tn),
the general mth-order m stage SSP Runge–Kutta time discretization of Equation (47) can be given
as [56]

U (0) =Un

U (i) =U (i−1)+�t AU (i−1)+�t S(i), i=1, . . . ,m (48)

Un+1 =
m∑

k=0
�m,kU

(k)

where �t is the time increment and the coefficients �m,k are given by [53, 56]

�1,0 = 1, �m,k = 1

k
�m−1,k−1, k=1, . . . ,m−2

�m,m = 1

m! , �m,m−1=0, �m,0=1−
m∑

k=1
�m,k

To maintain high-order accuracy, the boundary source should be set according to [56]

S(i) =
(
I +�t

�
�t

)i−1

S(tn) (49)

where I is the identity operator. By choosing m=4, a SSP fourth-order four-stage Runge–Kutta
method (SSP-RK4) is used in this work.

The MIB results for these two initial-boundary value problems are shown in Table VI. We
choose M=4 and L=6 in the MIB method. A uniform grid with N =100 is employed in both
examples. Sufficiently small �t values are used so that MIB results shown in Table VI are all of
extremely high accuracy. These results suggest that the MIB method works very well not only for
boundary value problems, but also for initial-boundary value problems.

It is of great interest to explore the stability of the MIB spatial discretization together with the
SSP-RK4 temporal discretization. We first examine the stability region of temporal discretization.
It is known that although there are many different mth-order m-stage Runge–Kutta methods, their
stability domains depend on m only if m�4 [31]. Thus the present SSP-RK4 method has the same
stability domain as the classical RK4 method. In particular, by denoting the eigenvalue of A being
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Table VI. Numerical errors of the MIB method for the time-dependent equations of Section 4.

Example 1 Example 2

t L∞ L2 L∞ L2

1 2.51 (−12) 2.64 (−12) 3.55 (−13) 2.95 (−13)
2 5.25 (−12) 6.02 (−12) 3.26 (−12) 2.86 (−12)
3 4.43 (−12) 6.00 (−12) 1.87 (−12) 1.69 (−12)
4 5.52 (−12) 6.65 (−12) 3.06 (−12) 2.73 (−12)
5 1.33 (−11) 1.55 (−11) 3.33 (−12) 2.97 (−12)
6 1.81 (−11) 2.23 (−11) 3.39 (−12) 3.02 (−12)
7 9.64 (−12) 1.61 (−11) 3.41 (−12) 3.04 (−12)
8 7.59 (−12) 8.56 (−12) 3.41 (−12) 3.04 (−12)
9 5.66 (−12) 1.25 (−11) 1.98 (−11) 1.75 (−11)
10 1.06 (−11) 1.59 (−11) 2.51 (−11) 2.22 (−11)

In Example 1, �t=2.5×10−4, while in Example 2, �t=2.0×10−5.
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Figure 9. (a) Stability region of the SSP-RK4 method. (b) Numerical CFL numbers of the MIB and central
FD methods for Example 2 in Section 4.

�, the stability function of the SSP-RK4 can be given as

S(�t,�)=1+�t�+ (�t�)2

2! + (�t�)3

3! + (�t�)4

4! (50)

The SSP-RK4 time integration will be stable provided that |S(�t,�)|�1 for all eigenvalues of A.
The stability region of the SSP-RK4 method is shown in Figure 9(a).

We next theoretically analyze the stability of the central FD approximation together with the
SSP-RK4 scheme by conducting the Fourier analysis. For this type of analysis, a periodic boundary

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:1690–1730
DOI: 10.1002/nme



MATCHED INTERFACE AND BOUNDARY (MIB) 1715

should be assumed. Consequently, the semi-discrete form is free of the source term S(t)

d

dt
U = AU (51)

where A is symmetric for second-order derivative, while anti-symmetric for first-order derivative.
Let us consider the hyperbolic equation

�u
�t

=−�u
�x

in Example 1 first. We consider the Fourier modes eiwx for wavenumber w in the range
−�/h�w��/h with h being the spacing. For the central FD approximation to −�/�x with M=1
(second-order central FD), eigenvalues of A can be found to be

Aeiwx =−eiw(x+h)−eiw(x−h)

2h
=−i

sinwh

h
eiwx (52)

Similarly, eigenvalues of A for (2M)th-order central FD approximation can be found to be [31]

Aeiwx =−i
sinwh

h

M−1∑
k=0

(k!)2
(2k+1)!2

2k
(
sin

wh

2

)2k

eiwx (53)

It is clear from Equations (52) and (53) that eigenvalues of central FD approximation to first
derivatives are all purely imaginary numbers. It is known that along the imaginary axis, the SSP-
RK4 will be stable within the interval i[−2

√
2,2

√
2]; see Figure 9(a). The critical number 2

√
2

can also be determined from Equation (50) by taking � being pure imaginary [34]. Denote �
as the spectral radius of central FD matrix A, i.e. �=max0�i�N |�i |. We then have that the
central FD scheme will be stable if |��t |�2

√
2. For central FD with M=1, one can derive from

Equation (52) that �=1/h. Thus, the second-order central FD is stable if �t�2
√
2h. In other

words, the corresponding Courant–Friedrichs–Levy (CFL) number is 2
√
2. By using a computer

algebra package, such as the Maple, one can calculate the maximum value of eigenvalues of high-
order central FD matrix given in Equation (53). The corresponding analytical CFL numbers are
listed in Table VII.

The stability analysis of the heat equation �u/�t=�2u/�x2 in Example 2 can be similarly
conducted. We first consider the second-order central FD approximation to �2/�x2. Eigenvalues
of A are found to be

Aeiwx = eiw(x+h)−2eiwx +eiw(x−h)

h2
= 2cos(wh)−2

h2
eiwx (54)

We note that eigenvalues � are all non-positive real numbers and the spectral radius can be simply
calculated to be �=4/h2. In fact, this spectral radius can be calculated based on the stencil
itself [34]

�=
∣∣∣∣ 1h2

∣∣∣∣+
∣∣∣∣− 2

h2

∣∣∣∣+
∣∣∣∣ 1h2

∣∣∣∣= 4

h2
(55)
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Table VII. CFL numbers in Section 4.

Example 1 Example 2

Central FD MIB Central FD MIB

M Analytical Numerical Numerical L Analytical Numerical Numerical L

1 2.82843 2.82805 2.82805 1 0.696323 0.696379 0.695894 1
2 2.06120 2.06101 2.06101 1,2 0.522243 0.522193 0.522193 1
3 1.78340 1.78348 1.78348 1, . . . ,5 0.460802 0.460829 0.460829 1
4 1.63436 1.63425 1.63425 1, . . . ,6 0.428402 0.428449 0.428449 1
6 1.47249 1.47254 1.47254 1, . . . ,7 0.393796 0.393701 0.393701 1
8 1.38318 1.38313 1.38313 1, . . . ,7 0.375027 0.375094 0.375094 1
10 1.32512 1.32503 1.32503 1, . . . ,7 0.362973 0.362976 0.363108 1

In Example 1, for each M , the MIB takes the same numerical CFL number for all reported L values. In
Example 2, for each M , the MIB takes the reported CFL number only for L=1. When L is larger, the MIB is
stable under a smaller CFL number.

Similarly, for the general (2M)th-order central FD method, all eigenvalues are non-positive real
numbers and the spectral radius can also be calculated as the absolute sum of corresponding stencil

�=
M∑

j=−M
|C (2)

j | (56)

Along the real axis, the SSP-RK4 will be stable within the interval [−D,0] (see Figure 9(a))
where D=2.7852935634052816. For each M , the central FD method for the heat equation will
be stable if ��t�D. Consequently, the analytical CFL numbers can be computed as D/�. These
results are given in Table VII.

We next numerically verify the analytical CFL numbers given in Table VII. To this end, we
consider a central FD discretization with analytical boundary treatments, i.e. the fictitious values
needed in the central FD approximation (see Figure 1) will be given directly based on analytical
solutions. The semi-discrete form of such a central FD discretization takes the form of Equation
(47), instead of Equation (51), but the corresponding source term S(t) will not affect the time
stability. Computationally, we note that in the present studies, the boundary data S(t) should be
processed as in Equation (49) for fractional time steps in the SSP-RK4 time integration. In both
examples, we consider a time integration in the range t ∈[0,T ] with a time increment �t . Denote
the total number of time steps to be Nt . We have Nt =T/�t . We numerically search for the critical
Nt values such that the computation is still stable. In particular, we choose h=0.001 and T =100
in Example 1, and h=0.01 and T =10 in Example 2. The critical Nt value is searched based on an
increment of 10 time steps and 100 time steps in Examples 1 and 2, respectively. Due to the spatial
resolution, a smaller increment of time steps will be insensitive. Based on the numerically detected
critical Nt value, one can compute the CFL number to be T/hNt and T/h2Nt , respectively, for
Examples 1 and 2. It can be seen clearly from Table VII that the numerical CFL numbers of the
central FD method are in excellent agreement with the analytical ones.

We finally analyze the stability of the MIB method. Consider again the semi-discrete form
Equation (47). We first note that the analytical CFL numbers are very difficult to calculate for
the MIB method, because of the complex structure of matrix A. Thus, we investigate the stability
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of the MIB method by considering two theoretical features of the discrete spectrum of A. First,
in comparing with the central FD method with the same M value, the MIB matrix might have
a different spectral radius �. Second, due to the loss of symmetry, the MIB method could yield
spurious modes when L is large, even though the MIB method has been shown to produce fewer
spurious modes than the OFD approaches do [33]. It is noted that the issue of spurious solutions
of the MIB method has been investigated in details in [33]. However, the connection between the
spurious modes and time instability has not been explored yet. In the present study, we show that
both spectral radius and spurious modes could affect time stability dramatically. In fact, Examples 1
and 2 are designed to illustrate the influences of these two features.

We first study the stability of the MIB method for solving hyperbolic equation in Example 1.
Following the same numerical setting of the central FD method, the critical CFL numbers of the
MIB methods are tested numerically; see Table VII. It is found that for each M value, there exists
a critical L value L∗. When L�L∗, the MIB method is stable and the CFL number is the same as
the corresponding central FD method. Nevertheless, the MIB method will be unstable if L>L∗.
The stable ranges of L for tested M values are reported in Table VII. In particular, we note that
when M is large, the critical L value takes a uniform upper bound 7 (or eight grid nodes since
the grid index starts from 0). This is consistent with our previous finding on the stability of the
hierarchical derivative matching method [34]. Two significant conclusions can be drawn based on
the present studies. First, the MIB is a stable method for any M value. Second, when M is large
and L�7, the MIB method cannot only achieve higher order accuracy, but also maintain the same
CFL stability condition as the standard higher order FD method.

The possible instability of the MIB method for the hyperbolic equation is due to the pres-
ence of spurious modes. As discussed above, the analytical eigenvalues of the central FD matrix
for the first-order derivatives are pure imaginary numbers. We thus define the spurious modes
(unphysical modes) in the present study as eigenvalues with non-vanishing real part [33]. To
detect spurious modes numerically, we examine the largest real part, max{Re(�)}, of the discrete
spectrum of the MIB method for different M and L values. By setting N =1000, these results
are presented in Table VIII. It can be observed from Table VIII that for each M , when L is
small, a vanishing albeit non-zero real part is presented, due to perhaps numerical round-off.
However, when L is too large, the real part becomes very large, indicating the presence of spurious
modes. It is clear from Figure 9(a) that such spurious modes will be outside of the SSP-RK4
stability region, unless �t→0. Therefore, the MIB method will be unstable for the hyperbolic
equation when the spurious modes occur. We finally note that the critical L∗ values in Table VIII
are the same as those in Table VII, because in fact the latter ones are dictated by the former
ones.

Table VIII. The largest real part of the discrete spectrum of the MIB method for Example 1 in Section 4.

M L=1 L=2 L=3 L=4 L=5 L=6 L=7 L=8

1 4.77 (−7) 1.16 (+3)
2 2.91 (−10) 4.69 (−7) 2.16 (+1)
3 7.97 (−7) 1.12 (−6) 1.26 (−6) 1.14 (−6) 1.13 (−10) 2.44 (+2)
4 2.49 (−7) 9.14 (−7) 1.76 (−6) 2.90 (−6) 2.54 (−6) 2.67 (−6) 1.88 (+1)
6 8.17 (−11) 1.27 (−10) 9.11 (−11) 8.28 (−11) 9.29 (−11) 2.52 (−10) 2.73 (−9) 7.94 (+1)
8 1.09 (−10) 1.14 (−10) 1.25 (−10) 1.85 (−6) 3.00 (−6) 7.22 (−6) 5.93 (−6) 5.89 (+1)
10 1.10 (−10) 1.04 (−10) 1.08 (−10) 1.85 (−10) 1.77 (−10) 1.98 (−10) 4.67 (−10) 4.06 (+1)
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We next analyze the stability of the MIB method for solving heat equation in Example 2.
Following the same numerical setting of the central FD method, the critical CFL numbers of the
MIB method are tested numerically. It is found that unlike in Example 1, the MIB discretization
of the heat equation is always stable for all tested M and L values. When L=1, the CFL numbers
of the MIB are found to be essentially the same as those of the central FD method; see Table VII
and Figure 9(b). The numerical CFL numbers for a larger L are depicted in Figure 9(b). It can
be observed that, except for M=2, the CFL number will be declined when L is larger. Moreover,
when M�3, CFL curves for different M eventually merge into one. This suggests that when both L
and M are large, the stability condition depends primarily on L . Again, two significant conclusions
can be drawn. First, the MIB is always stable for second-order derivative approximation. Second,
by using a large L value, the MIB method can achieve extremely high order of accuracy with a
slightly smaller CFL number than that of the central FD method.

We next study the discrete spectrum of the MIB matrix. Since the analytical eigenvalues are
negative real numbers, we define the spurious mode in the present context as eigenvalues with
imaginary part. To detect spurious modes, we simply check the largest imaginary part of the discrete
spectrum, max{Im(�)}. Besides this index, other two indices are also recorded for each discrete
spectrum, i.e. the largest real part max{Re(�)} and the smallest real part min{Re(�)}. The former
is crucially related to the instability region of the SSP-RK4 scheme, while the latter primarily
determines the spectral radius �. These indices for first four M values are given in Table IX.

Table IX. Analysis of the discrete spectrum of the MIB method for Example 2 in Section 4.

M=1 M=2

L min{Re(�)} max{Re(�)} max{Im(�)} min{Re(�)} max{Re(�)} max{Im(�)}
1 −4.00 (+4) 0.00 (+0) 0.00 (+0) −5.33 (+4) 0.00 (+0) 0.00 (+0)
2 −5.06 (+4) 0.00 (+0) 0.00 (+0) −6.00 (+4) 0.00 (+0) 0.00 (+0)
3 −6.92 (+4) 7.21 (−11) 0.00 (+0) −7.42 (+4) 2.38 (−11) 0.00 (+0)
4 −9.11 (+4) 0.00 (+0) 0.00 (+0) −8.87 (+4) 2.71 (−12) 0.00 (+0)
5 −1.15 (+5) 0.00 (+0) 0.00 (+0) −1.01 (+5) 5.76 (−11) 0.00 (+0)
6 −1.41 (+5) 0.00 (+0) 0.00 (+0) −1.10 (+5) 0.00 (+0) 0.00 (+0)
7 −1.68 (+5) 0.00 (+0) 0.00 (+0) −1.16 (+5) 0.00 (+0) 0.00 (+0)
8 −1.97 (+5) 8.09 (−13) 0.00 (+0) −1.15 (+5) 1.94 (−9) 2.84 (+3)
9 −2.27 (+5) 0.00 (+0) 0.00 (+0) −1.06 (+5) 0.00 (+0) 1.09 (+4)
10 −2.57 (+5) 1.53 (−9) 1.29 (+3) −8.05 (+4) 0.00 (+0) 1.93 (+4)

M=3 M=4

L min{Re(�)} max{Re(�)} max{Im(�)} min{Re(�)} max{Re(�)} max{Im(�)}
1 −6.04 (+4) 0.00 (+0) 0.00 (+0) −6.50 (+4) 0.00 (+0) 0.00 (+0)
2 −6.54 (+4) 0.00 (+0) 0.00 (+0) −6.90 (+4) 0.00 (+0) 0.00 (+0)
3 −7.74 (+4) 0.00 (+0) 0.00 (+0) −7.97 (+4) 0.00 (+0) 0.00 (+0)
4 −9.05 (+4) 1.40 (−12) 0.00 (+0) −9.18 (+4) 0.00 (+0) 0.00 (+0)
5 −1.02 (+5) 0.00 (+0) 0.00 (+0) −1.03 (+5) 1.75 (−11) 0.00 (+0)
6 −1.12 (+5) 2.84 (−11) 0.00 (+0) −1.13 (+5) 2.29 (−11) 0.00 (+0)
7 −1.21 (+5) 1.53 (−10) 0.00 (+0) −1.21 (+5) 0.00 (+0) 0.00 (+0)
8 −1.29 (+5) 0.00 (+0) 0.00 (+0) −1.29 (+5) 2.20 (−10) 0.00 (+0)
9 −1.37 (+5) 1.08 (−10) 4.62 (+3) −1.36 (+5) 1.61 (−10) 4.45 (+3)
10 −1.46 (+5) 0.00 (+0) 8.68 (+3) −1.42 (+5) 0.00 (+0) 9.10 (+3)
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Results for other M values are found to be similar to that of M=4, and are thus omitted to
save the space. It is found that for each M , when L is very large, the MIB matrix still produce
spurious modes, i.e. non-zero max{Im(�)} in Table IX. However, the spurious modes will not
affect the stability significantly. Physically, the spurious modes with both negative real part and
non-vanishing imaginary part can always be scaled into the stability region of the SSP-RK4 (see
Figure 9(a)) by using a proper �t . Numerically, the largest real part max{Re(�)} remains to be
vanishing when the spurious modes occur (see Table IX). Therefore, the MIB method is always
stable, no matter the spurious modes are presented or not. Instead, the stability of the MIB method
for the heat equation is affected by the spectral radius � only. Here � is essentially determined by
the smallest real part min{Re(�)}. It can be seen from Table IX that except for M=2, when L
is larger, min{Re(�)} is larger. This explains why the CFL number will decrease as L increases
in Figure 9(b). For M=2, min{Re(�)} becomes smaller after L is large enough to provoke
spurious modes. Thus, the corresponding CFL number increases eventually in Figure 9(b). We
finally note that the current critical L values that are free of spurious modes are much larger than
those in Example 1, especially when M is small. This is essentially consistent with our previous
works [33, 34].

5. HIGH-ORDER DIFFERENTIAL EQUATIONS

High-order differential equations are often associated with multiple boundary conditions, so that
the problem is well posed. These multiple non-standard boundary conditions usually involve high-
order derivatives, and have to be properly implemented in order to attain a correct numerical
solution [24, 32, 57]. In this subsection, we validate the MIB method by considering a sixth-order
and an eighth-order differential equations. The use of the MIB method for a fourth-order differential
equation with a free-edged boundary was considered in [58].

5.1. A sixth-order eigenvalue problem

A circular ring structure that has rectangular cross-sections of constant width and parabolic variable
thickness, can be formulated as an eigenvalue problem of a sixth-order differential equation. We
denote w as the tangential displacement, � as the dimensionless frequency, and r as the variable
related to the thickness of the cross-section of the ring. The eigenvalue problem for a half of
the ring structure with constraints and a quarter of ring structure without constraints is given,
respectively, in Examples 1 and 2.

• Example 1 [32]

�1w
(6)+�2w

(5)+�3w
(4)+�4w

(3)+�5w
(2)+�6w

(1) =�2( f w(2)+ f (1)w(1)−�2 f w) (57)

w(0)=w(1)(0)=w(3)(0)=0, w(1)=w(1)(1)=w(3)(1)=0 (58)

for x ∈[0,1]. Here �1=	/�4, �2=3	(1)/�4, �3=(2	/�2)+(3	(2)/�4), �4=(4	(1)/�2)+
(	(3)/�4), �5=	+3	(2)/�2, and �6=	(1)+	(3)/�2, in which 	=[ f (x)]3 and f = f (x)=
−4(r−1)x2+4(r−1)x+1.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:1690–1730
DOI: 10.1002/nme



1720 S. ZHAO AND G. W. WEI

• Example 2 [32]
�1w

(6)+�2w
(5)+�3w

(4)+�4w
(3)+�5w

(2)+�6w
(1) =�2( f w(2)+ f (1)w(1)−�2 f w/4) (59)

w(0) = w(2)(0)=0, 	(1)(0)[w(1)(0)+4w(3)(0)/�2]+4	(0)w(4)(0)/�2=0

w(1) = w(2)(1)=0, 	(1)(1)[w(1)(1)+4w(3)(1)/�2]+4	(1)w(4)(11)/�2=0
(60)

for x∈[0,1]. Here �1=16	/�4, �2=48	(1)/�4, �3=(8	/�2)+(48	(2)/�4), �4=(16	(1)/�2)+
(16	(3)/�4), �5=	+12	(2)/�2, and �6=	(1)+4	(3)/�2, in which 	=[ f (x)]3 and f =
f (x)=−(r−1)x2+2(r−1)x+1.

In both examples, Dirichlet zero boundary conditions are directly enforced in the MIB boundary
treatment. Unlike previous studies, additional boundary conditions are not derived, because
governing equations are complicated. Only other two boundary conditions are used in the present
MIB boundary treatment. For example, we consider the MIB treatment at the left end x=0
for Example 1. Two fictitious points are determined based on two boundary conditions w(1)(0)=
w(3)(0)=0 in the first step. Then, only the lowest order boundary condition, i.e. w(1)(0)=0, is
iteratively enforced to estimate one more fictitious point each step, until a sufficient number of
fictitious points is attained. The MIB method for the right end and Example 2 can be similarly done.
A standard eigenvalue solver is used to solve the eigenvalue problem resulting from the MIB
discretization.

The frequencies of the ring structure calculated by the MIB method are listed in Tables X and XI,
respectively for Examples 1 and 2. Since there is no exact solution for this problem, the literature
results obtained by the differential quadrature method (DQM) [24], the Rayleigh–Ritz method
[24], the generalized differential quadrature rule (GDQR) method [32, 59], and the local adaptive
differential quadrature method (LaDQM) [32] are adopted as references. We consider several mesh
sizes N for each numerical scheme. We note that a fictitious domain boundary treatment is also
used in the LaDQM. As a generalized differential quadrature method, the LaDQM makes use of
Lagrange kernels, which can be regarded as OFD approximations near the boundary. The accuracy
of the LaDQM is determined by the bandwidth M , similar to the MIB and OFD methods. In both
tables, results are given for M=N+2 in the LaDQM, while M= L=N in the MIB. Thus, based
on the same size N , the LaDQM supposes to be the more accurate than the MIB.

It can be observed from Tables X and XI that the MIB method converges to the same frequency
parameter as that of the GDQR for all r values. For most cases, the GDQR slightly outperforms
both LaDQM and MIB methods, in terms of convergence. However, in view of the complexity of
the GDQR method, which involves the Hermite interpolating polynomials, both fictitious domain
boundary methods are simpler. It is of great interest to further compare the accuracies of two
fictitious domain methods. By considering the same mesh size N =10 in Example 1, the accuracies
of two approaches are very similar and the LaDQM is slightly better. Nevertheless, if the accuracy
is compared in terms of the same bandwidth M=12, i.e. N =10 for the LaDQM and N =12 for
the MIB, the proposed method is actually more accurate. Moreover, the MIB method significantly
outperforms the LaDQM in Example 2, in terms of both fixed N and M comparisons. In fact, for
large r values, the LaDQM does not really converge to the reference value of the GDQR, while
the MIB method does. The slight overshoot of the LaDQM might be due to the fact that the third
boundary condition is very complex in Example 2. On the other hand, as a general framework to
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Table X. Comparison of fundamental frequencies for Example 1 of
the sixth-order eigenvalue problem in Section 5.1.

Scheme N r =1.0 r =1.1 r =1.2 r =1.3 r =1.4 r =1.5

DQM [24] — 2.268 2.417 2.561 2.701 2.839 2.976

Rayleigh-Ritz [24] — 2.274 2.416 2.557 2.697 2.834 2.970

GDQR [32] 6 2.2631 2.4133 2.5597 2.7139 2.8946 3.1297
7 2.2669 2.4137 2.5565 2.6944 2.8242 2.9407
8 2.2667 2.4137 2.5567 2.6962 2.8318 2.9623
9 2.2667 2.4137 2.5568 2.6966 2.8336 2.9681
10 2.2667 2.4137 2.5568 2.6966 2.8335 2.9678

LaDQM [32] 6 2.2624 2.4135 2.5583 2.7019 2.8452 2.9878
7 2.2647 2.4136 2.5576 2.6995 2.8400 2.9791
8 2.2669 2.4137 2.5570 2.6976 2.8364 2.9738
9 2.2668 2.4137 2.5569 2.6972 2.8353 2.9715
10 2.2667 2.4137 2.5568 2.6968 2.8341 2.9694

MIB 8 2.2658 2.4136 2.5572 2.6982 2.8374 2.9747
9 2.2665 2.4137 2.5570 2.6974 2.8357 2.9720
10 2.2668 2.4137 2.5568 2.6970 2.8346 2.9702
11 2.2668 2.4137 2.5568 2.6968 2.8341 2.9691
12 2.2667 2.4137 2.5568 2.6967 2.8337 2.9685

In the LaDQM [32], M=N+2, while in the MIB, M=L=N .

Table XI. Comparison of fundamental frequencies for Example 2 of
the sixth-order eigenvalue problem in Section 5.1.

Scheme N r =1.0 r =1.1 r =1.2 r =1.3 r =1.4 r =1.5

DQM [24] — 2.686 2.849 3.010 3.171 3.332 3.493

Rayleigh-Ritz [24] — 2.687 2.846 3.006 3.167 3.326 3.486

GDQR [32] 5 2.6828 2.8452 3.0062 3.1666 3.3267 3.4861
6 2.6833 2.8452 3.0062 3.1665 3.3263 3.4858
7 2.6833 2.8452 3.0062 3.1665 3.3262 3.4857
8 2.6833 2.8452 3.0062 3.1665 3.3263 3.4858
9 2.6833 2.8452 3.0062 3.1665 3.3263 3.4858

LaDQM [32] 5 2.6956 2.8523 3.0199 3.1917 3.3595 3.5150
6 2.6828 2.8488 3.0181 3.1884 3.3577 3.5251
7 2.6830 2.8488 3.0182 3.1887 3.3579 3.5230
8 2.6833 2.8489 3.0181 3.1884 3.3578 3.5252
9 2.6833 2.8489 3.0181 3.1884 3.3578 3.5248

MIB 7 2.6854 2.8458 3.0067 3.1680 3.3289 3.4882
8 2.6831 2.8452 3.0062 3.1667 3.3269 3.4867
9 2.6832 2.8452 3.0062 3.1666 3.3267 3.4864
10 2.6833 2.8452 3.0062 3.1665 3.3264 3.4859
11 2.6833 2.8452 3.0062 3.1665 3.3263 3.4859

In the LaDQM [32], M=N+2, while in the MIB, M=L=N .
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handle all type of boundary conditions, such a complex boundary condition imposes no difficulty
at all to the MIB method. Thus, the MIB results for Example 2 are as well as for Example 1. This
suggests that the MIB method is a very robust boundary closure approach.

5.2. An eighth-order boundary value problem

We next consider an eighth-order boundary value problem [32, 57, 60]. The problem is defined as

y(8)+�(x)y = 	(x), a�x�b

y(a) = A0, y(2)(a)= A2, y(4)(a)= A4, y(6)(a)= A6 (61)

y(b) = B0, y(2)(b)= B2, y(4)(b)= B4, y(6)(b)= B6

where y= y(x) and �(x) and 	(x) are continuous functions defined in the interval x ∈[a,b]. Here
Ai and Bi , (i=0, 2, 4, 6), are finite real constants. Two examples with different coefficient setting
and analytical solutions are studied.

• Example 1 [32]
�(x) = −x, 	(x)=−(55+17x+x2−x3)ex , x ∈[−1,1]
A0 = 0, A2=2/e, A4=−4/e, A6=−18/e

B0 = 0, B2=−6e, B4=−20e, B6=−42e

The analytical solution is y(x)=(1−x2)ex .
• Example 2 [32]

�(x) = −1, 	(x)=8(2x sin(x)−7 cos(x)), x ∈[−1,1]
A0 = 0, A2=−4 sin(1)+2 cos(1), A4=8 sin(1)−12 cos(1)

A6 = −12 sin(1)+30 cos(1)

B0 = 0, B2=−4 sin(1)+2 cos(1), B4=8 sin(1)−12 cos(1)

B6 = −12 sin(1)+30 cos(1)

The analytical solution is y(x)=(x2−1)cos(x).

The MIB method is implemented in the same manner as in the previous studies. At each
boundary, three boundary conditions excluding the Dirichlet zero condition are used in the first
MIB step to estimate three fictitious points. Then only the lowest order boundary condition is
enforced repeatedly. The MIB results of both examples are listed in Tables XII and XIII. In both
tables, only maximum absolute errors are reported in order to compare with the literature results
of the spline method [57], the GDQR method [32, 59], and the LaDQM [32]. It can be seen from
these two tables that the spline method does not converge near the boundaries, while other three
methods work well there. In terms of accuracy, the GDQR method is obviously the best one, since
it uses a Chebyshev grid. On the other hand, by using a simple uniform grid, the MIB method
is almost as accurate as the LaDQM in all cases. In summary, the present studies on high-order
differential equations indicate that the MIB scheme is a robust, accurate and reliable boundary
approach for high-order FD methods.
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Table XII. Maximum absolute errors of Example 1 of the eighth-order
boundary value problem in Section 5.2.

Spline [57] (N =63) GDQR [32] LaDQM [32] MIB

y(k) [x3, xN−4] Otherwise N =6 N =10 N =6 N =10 N =6 N =10

k=0 9.44 (−5) 4.94 (+3) 3.13 (−6) 1.54 (−11) 7.58 (−5) 2.71 (−9) 2.76 (−4) 3.90 (−8)
k=1 1.45 (−4) 1.17 (+5) 5.09 (−6) 2.75 (−11) 1.30 (−4) 4.83 (−9) 4.44 (−4) 6.35 (−8)
k=2 2.34 (−4) 4.98 (+7) 7.52 (−6) 4.07 (−11) 1.90 (−4) 7.31 (−9) 6.86 (−4) 9.57 (−8)
k=3 3.58 (−4) 1.05 (+10) 1.50 (−5) 9.28 (−11) 4.10 (−4) 1.66 (−8) 1.17 (−3) 1.77 (−7)
k=4 5.87 (−4) 2.45 (+12) 2.20 (−5) 1.94 (−10) 6.48 (−4) 2.82 (−8) 1.79 (−3) 2.49 (−7)
k=5 8.61 (−4) 2.40 (+14) 1.83 (−4) 1.58 (−9) 2.34 (−3) 1.18 (−7) 3.01 (−3) 1.47 (−6)
k=6 1.73 (−3) 1.20 (+16) 4.09 (−4) 3.21 (−9) 4.53 (−3) 2.69 (−7) 6.02 (−3) 2.73 (−6)
k=7 1.21 (−2) 2.57 (+17) 8.81 (−3) 1.70 (−7) 7.77 (−2) 6.93 (−6) 1.28 (−1) 2.90 (−5)

In the LaDQM [32], M=N+3, while in the MIB, M=L=N .

Table XIII. Maximum absolute errors of Example 2 of the eighth-order
boundary value problem in Section 5.2.

Spline [57] (N =63) GDQR [32] LaDQM [32] MIB

y(k) [x3, xN−4] Otherwise N =6 N =10 N =6 N =10 N =6 N =10

k=0 1.31 (−4) 2.24 (+3) 2.61 (−6) 1.49 (−11) 7.38 (−5) 4.05 (−9) 2.25 (−4) 1.24 (−8)
k=1 2.02 (−4) 5.50 (+4) 4.16 (−6) 2.34 (−11) 1.16 (−4) 6.38 (−9) 3.52 (−4) 2.20 (−8)
k=2 3.24 (−4) 4.69 (+6) 6.23 (−6) 3.64 (−11) 1.81 (−4) 9.97 (−9) 5.61 (−4) 3.29 (−8)
k=3 5.01 (−4) 4.95 (+9) 1.13 (−5) 5.85 (−11) 2.90 (−4) 1.60 (−8) 8.48 (−4) 7.63 (−8)
k=4 7.94 (−4) 1.15 (+12) 1.47 (−5) 8.49 (−11) 4.36 (−4) 2.41 (−8) 1.48 (−3) 1.31 (−7)
k=5 1.26 (−3) 1.13 (+14) 4.75 (−5) 1.82 (−10) 8.29 (−4) 4.62 (−8) 2.11 (−3) 5.38 (−7)
k=6 1.85 (−3) 5.67 (+15) 9.11 (−5) 4.66 (−10) 8.94 (−4) 5.21 (−8) 4.84 (−3) 2.25 (−6)
k=7 2.15 (−3) 1.21 (+17) 1.30 (−3) 1.62 (−8) 1.19 (−2) 1.22 (−6) 4.06 (−2) 5.68 (−5)

In the LaDQM [32], M=N+3, while in the MIB, M=L=N .

6. IMPLEMENTING BOUNDARY CONDITIONS IN THE DISCRETE
SINGULAR CONVOLUTION

Although the MIB boundary method is primarily applied to the central FD method in this paper, it
in principle can be utilized in any non-standard high-order FD method [5–12] to impose boundary
conditions. We illustrate this point in this subsection by considering the discrete singular convolu-
tion algorithm [26, 44], which has been widely used for solving various challenging computational
problems in fluid dynamics simulation [61], structural analysis [27, 62], computational electro-
magnetics [28, 29], and so on.

The mathematical foundation of the discrete singular convolution algorithm is the theory
of distributions and the theory of wavelets. By appropriately selecting parameters of a kernel,
the discrete singular convolution approach typically delivers the spectral accuracy of global
spectral/pseudospectral methods for numerical integration [30, 49]. In particular, it has been
proved that the truncation error of the discrete singular convolution algorithm by using regularized
Shannon’s kernel (RSK) decays exponentially with respect to the increase in sampling points [63].
On the other hand, as the discrete singular convolution approach is still a local method in the
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general sense, like the FD scheme, it thus could be more flexible than global method in terms of
handling complex geometry and boundary conditions [30, 61, 62].

For simplicity, the discrete singular convolution algorithm is briefly described here. The reader
is referred to original papers [26, 27, 44] for more details. In the discrete singular convolution
algorithm, a function and its nth-order derivative are usually approximated via a discretized
convolution

u(n)(x)≈
M∑

k=−M

(n)
�,�(x−xk)u(xk), n=0,1,2, . . . (62)

where 2M+1 is the computational bandwidth and 
�,�(x−xk) is a collective symbol for the
(regularized) discrete singular convolution kernels. The high-order derivative terms 
(n)

�,�(x−xk)
in (62) are given by


(n)
�,�(x−xk)=

(
d

dx

)n


�,�(x−xk) (63)

Here, the differentiation can be carried out analytically. Numerical solution of differential equations
can be easily implemented by a FD (collocation) scheme using Equation (62).

Although many other discrete singular convolution kernels can be similarly employed, RSK [26]
is employed in the present study,


h,�(x−xk)=
sin

�

h
(x−xk)

�

h
(x−xk)

e−(x−xk)2/2�2 (64)

The parameter � determines the width of the Gaussian envelop and often varies in association with
the grid spacing, i.e. �=rh, where r is a parameter chosen in computation. For a given problem,
optimal parameters M and r can be chosen through a Fourier dispersion analysis [49].

In the following, we consider two numerical experiments to examine the MIB boundary treatment
for the discrete singular convolution method. Boundary value problems of the Poisson equation in
both 1D and 2D are employed for this purpose.

• Example 1

uxx = −k2 sin(kx)+1 in �

u = 1 on �1 (65)

ux = k cos(k)+2 on �2

The analytical solution is u=sin(kx)+ 1
2 x

2+x+1.
• Example 2

�u = −2k2 sin(kx)cos(ky)+(2xy+1)(x2+ y2) in �

u = 0 on �1

�u
�y

= x on �2 (66)
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�u
�x

= k cos(k)cos(ky)+ y3+ y2+ y on �3

u = cos(k)sin(kx)+ 1
3 x

3+ 1
2 x

2+x on �4

The analytical solution is u(x, y)=sin(kx)cos(kx)+ 1
3 x

3y3+ 1
2 x

2y2+xy.

The MIB boundary treatment can be similarly conducted as in previous studies. By considering
two mesh sizes and two wavenumbers k=10 and 20, numerical results are listed in Table XIV. Very
good results are obtained in all cases. Example plots of numerical results are shown in Figure 10.
The excellent agreement between the numerical and analytical solutions can be seen clearly in
Example 1. Since a larger k corresponds to a more oscillatory solution, the numerical accuracy is
lower for a fixed resolution in Table XIV. However, reasonably good results are still attained for the
toughest case where only 21 grid points are utilized along each direction to resolve wavenumber
k=20. This is consistent with the literature study [28, 49] that the discrete singular convolution
method is a dispersion vanishing method, thus it is suitable for solving short wave problems.

Table XIV. Numerical errors of the discrete singular convolution method with
M=20 for Example 1 and 2 of Section 6.

N =20 N =40

Example k L2 L∞ L2 L∞
1 10 9.37 (−7) 9.92 (−7) 1.05 (−10) 1.26 (−10)

20 2.21 (−2) 2.08 (−2) 3.00 (−6) 2.81 (−6)
2 10 3.02 (−7) 3.44 (−7) 1.00 (−10) 1.94 (−10)

20 7.25 (−4) 1.08 (−3) 2.03 (−7) 3.02 (−7)

In Example 1, r =2.6 and L=11. In Example 2, r =2.5 and L=12.
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Figure 10. Solutions of Poisson equations of Section 6. (a) Analytical (solid line) and numerical solutions
(stars) of Example 1 with k=20, M=20, N =40, r =2.6, and L=11 and (b) numerical solutions of

Example 2 with k=20, M=20, N 2=402, r =2.5, and L=12.
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Moreover, a comparison among different examples in Table XIV reveals that the present method
performs equally well in all cases. This further demonstrates that robustness of the proposed MIB
method and its potential for being used in non-standard FD methods [5–12].

7. CONCLUSION

This paper addresses a long-standing difficulty in the treatment of general boundary conditions
in the high-order central finite difference (FD) solution of partial differential equations. A novel
high-order boundary scheme, the matched interface and boundary (MIB) method is introduced to
incorporate boundary conditions into high-order approximations. In the MIB method, boundary
conditions are repeatedly utilized to systematically determine a large number of function values
at fictitious points outside the domain. Consequently, translation invariant differential kernels
can be applied near the boundary. Extensive numerical experiments have been carried out to
validate the MIB method and to compare with other high-order boundary closure methods. Various
problems in 1D, 2D, and 3D are considered to demonstrate the robustness of the MIB method.
The implementation of boundary conditions on irregular domains is under our consideration.

In summary, the proposed MIB method has the following features:

• The MIB boundary treatment can achieve arbitrarily high-order accuracy in principle. Up
to 16th-order MIB schemes have been numerically verified in higher dimensions. Moreover,
compared with the one-sided finite difference (OFD) method that could have the same order
of accuracy, the MIB is usually more accurate.

• In an application of the present scheme [33], the proposed MIB method has been shown to
be free of spurious solutions by appropriately choosing L , while OFD approaches do suffer
serious problems of spurious solutions when the half bandwidth M is large. Although one-sided
FD approximations are employed in the MIB fictitious domain boundary treatment, the MIB
method is less likely to produce spurious modes than the OFD approaches. This is primarily
because unlike in the OFD approaches, the impart of non-symmetric approximations on the
final discrete matrix is indirect in the MIB method and is further balanced by the central FD
convolution [33]. However, it is previously unknown how the spurious modes will impact on
the time instability of the MIB method, when it is applied to initial-boundary value problems.

• In this work, the MIB method has been shown to be a stable method for solving time-
dependent problems. CFL time stability conditions of the central FD/MIB method for solving
both hyperbolic and diffusion equations are established. The influence of both spectral radius
and spurious mode to time stability of the MIB semi-discretization has been investigated
in details. In particular, for first-order derivative approximation, the MIB method follows
the same stability constraint as the central FD method when L is small. However, when L
is larger than certain critical number, the MIB method is unstable due to the presence of
spurious modes with non-vanishing positive real part. In general, the MIB approximation
to odd order derivatives should all follow this stability pattern. For second-order derivative
approximation, the MIB method is found to be always stable for all tested M and L values.
The MIB method actually still permits spurious modes with non-vanishing imaginary parts.
However, such modes are still within the stability region. It should be generally true that
spurious modes will not affect time instability for even order derivatives. The spectral radius
then plays an important role. It is found that for a given M , when L increases, the spectral
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radius usually increases, so that the CFL number declines. In short, in both studied cases, the
MIB method can achieve very high order of accuracy, such as 8th or 12th order, while still
maintaining strong stability.

• The MIB method is a very robust approach to implement boundary conditions for solving
partial differential equations. This robustness has been verified by applying the MIB method
to various boundary value problems, eigenvalue problems, initial-boundary value problems,
and high-order differential equations. The MIB method is shown to be able to handle not
only the standard Dirichlet, Neumann, and Robin boundary conditions, but also more general
ones, such as multiple conditions and time-dependent conditions.

• The MIB method can be incorporated into any high-order approach, such as the compact FD,
the Euler sum, optimized FD schemes, and the discrete singular convolution algorithm, to
accommodate boundary conditions up to machine accuracy.

• The formulation of the MIB method is quite simple. Furthermore, the MIB coefficient gener-
ation can be carried out only once to deal with boundary conditions with spatial and temporal
dependent inhomogeneous terms. Thus, the MIB boundary treatment is computationally cheap.

• Although only uniform grids are considered in this paper, the MIB method can be freely
applied to non-uniform grids, as well as adaptive grids.

• The proposed MIB method works for non-smooth or discontinuous solutions as well. For
problems with non-smooth solutions inside the domain boundaries, the MIB method can
achieve up to sixth-order of accuracy for arbitrarily curved interface [36]. Using the MIB, it
is also possible to extend non-smooth solutions to regions outside the boundary in a boundary
value problem. This amounts to applying the MIB method to both the boundary and interface.

APPENDIX: ACRONYM TABLE

The acronyms used in this paper are listed below, in which those marked with ∗ are introduced in
this work.

Acronym Stands for

1D one-dimensional
2D two-dimensional
3D three-dimensional
CFL Courant–Friedrichs–Levy
DQM differential quadrature method [24]
FD∗ finite difference
FLAME flexible local approximation method [16–20]
GDQR generalized differential quadrature rule [59]
LaDQM local adaptive differential quadrature method [32]
MIB∗ matched interface and boundary
OFD∗ one-sided finite difference
OFD1∗ one-sided finite difference type 1, see Figure 1(b)
OFD2∗ one-sided finite difference type 2, see Figure 1(c)
RK4 fourth-order Runge–Kutta
SSP strong stability-preserving [53–56]
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