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Abstract

The Poisson–Boltzmann (PB) model is a widely used electrostatic model for

biomolecular solvation analysis. Formulated as an elliptic interface problem, the PB

model can be numerically solved on either Eulerian meshes using finite difference/

finite element methods or Lagrangian meshes using boundary element methods.

Molecular surface generators, which produce the discretized dielectric interfaces

between solutes and solvents, are critical factors in determining the accuracy and

efficiency of the PB solvers. In this work, we investigate the utility of the Eulerian

Solvent Excluded Surface (ESES) software for rendering conjugated Eulerian and

Lagrangian surface representations, which enables us to numerically validate and

compare the quality of Eulerian PB solvers, such as the MIBPB solver, and the

Lagrangian PB solvers, such as the TABI-PB solver. Furthermore, with the ESES soft-

ware and its associated PB solvers, we are able to numerically validate an interesting

and useful but often neglected source-target symmetric property associated with the

linearized PB model.
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1 | INTRODUCTION

As one of the four components of Maxwell's equations, the Gauss's law

relates the distribution of electric charges to the resulting electric field.

The Gauss's law can be expressed in both differential and integral forms.

The integral form describes the electric flux through a closed surface,

and the differential form yields the Poisson's equation. By considering

both Eulerian and Lagrangian representations of the molecular surfaces

of biomolecules, this paper studies the connection between the two

forms of the Gauss's law as well as the associated numerical algorithms

for solving the electric potentials. In the scale of biomoleculues (e.g., Å)

such as protein and nucleic acids, we consider the popular Poisson–

Boltzmann (PB) model with the following assumptions. (i) The biomole-

cules carry electrostatic charges, modeled by partial charges located at

the atomic centers. These charges are obtained from force fields based

on experimental and quantum chemistry computation. (ii) The biomole-

cules are solvated in solvent and the solvent molecules (e.g., water) can-

not reach the inside, thus a dielectric surface which separates the solute

and solvent will be considered. In our practice, we use the solvent

excluded surface (SES),1 also known as the molecular surface. (iii) There

are dissolved electrolytes in the solvent. Due to the abundance and bulk

effects of the electrolytes, they are modeled with the Boltzmann distri-

bution, a probability function used in statistical physics to characterize

state of a system of particles, with respect to temperature and energy.
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With the trending of the studies and findings in biology and

health care at the molecular levels, the PB model has shown its broad

applications in biomolecular simulations such as protein structure,2

chromatin packing,3 pKa,4-6 membrane,7 binding energy,8 solvation

free energy,9 ion channel profiling,10 etc.

Mathematically, the PB model is an elliptic interface problem with

several numerical difficulties such as discontinuous dielectric coeffi-

cients, singular sources, a complex interface, and an unbounded

domain. Grid-based finite difference or finite volume discretizations

that discretize the entire volumetric domain have been developed in,

for example, References 11-17. The grid-based discretization is effi-

cient and robust and is therefore popular. However, solvers that are

based on discretizing the partial differential equation may suffer from

accuracy reduction due to discontinuity of the dielectric coefficients,

nonsmoothness of the solution, singularity of the sources, and trunca-

tion of the domains, unless special interface18,19 and singularity20-24

treatments are applied. These treatments come at the price of more

complicated discretization scheme and possibly reduced convergence

speed of the iterative solver for the linear system. For the linearized

PB model, an alternative approach is to reformulate the linear PB

equation as a boundary integral equation and use the boundary

elements to discretize the molecular surface, for example

References 25-33. Besides the reduction from three-dimensional

space to the two-dimensional molecular boundary, this approach has

the advantage that singular charges, interface conditions, and far-field

condition are incorporated analytically in the formulation, and hence

do not impose additional approximation errors. Furthermore the

boundary integral approach can be efficiently accelerated by fast algo-

rithms such as fast multipole method34 and treecode.35,36

The underlying connection between the finite difference PB

solvers and the boundary integral PB solvers is in fact the connection

between the differential form and integral form of the Gauss's law.

When a finite difference method is used, a rigorous treatment of inter-

face conditions requires the location where the mesh line intersects the

molecular surface as well as the normal direction of the surface at the

intersection. This is called a Eulerian representation of the molecular

surface as seen in Figure 1A. Alternatively the boundary integral

method requires a body-fitted triangulation of the molecular surface,

which is called the Lagrangian representation as seen in Figure 1B.

The molecular surface normally has three popular definitions. The

van der Waals (VDW) surface, which is the union of exposed atomic sur-

faces, is a simple definition that can be used for both molecular modeling

and visualization. However, the VDW surface gives rise to numerous

geometric singularities on the surface and thus causes numerical instabil-

ity when it is used as an interface for implicit solvation modeling. The

other two surfaces requires a spherical solvent probe to rotate on con-

tacting the VDW surface. The trace of the center of the probe forms the

Solvent Accessible Surface (SAS) while the contact, toroidal, and reen-

trant surfaces of the probe sphere form the SES as introduced by Lee

and Richards.1 The SAS has relatively simple definition and is easier to

be numerically described. However, even though it is smoother than

VDW, there are still many sharp corners when the probe transits from

one atom to the other. The SES is the smoothest among the three as an

essentially C1-continuous surface with only cusps under extreme situ-

ations.19 Thus SES becomes the most popular surface definition in

biophysics and molecular biology. In addition to its usage in biomolec-

ular visualization, it has been widely used in implicit solvent models

due to its C1 alike smoothness. Connolly formulates the mathematical

F IGURE 1 The two solvent excluded surface (SES) representation of protein 1a63: (A) Eulerian representation with location and surface
normal direction of intersection between mesh lines and the SES surface; (B) Lagrangian representation with triangles and surface normal
direction at the vertices.
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representation of the SES for arbitrary biomolecules in terms of con-

vex patches, saddle patches, and concave patches.37 There are many

available software generating the SES in Lagrangian representations

such as MSMS,38 NanoShaper,39 and TMSmesh.40

Such representations are especially suitable for boundary integral

methods, and a comparison between the popular MSMS and

NanoShaper has been conducted in Reference 41. When the Eulerian

representation is needed, additional work is required to find inter-

section of the mesh line and its normal direction by very challenging

interpolation schemes.42,43

Previously, Liu et al. developed a software package called Eulerian

solvent excluded surface (ESES)44 for the generation of accurate SESs

in Cartesian grids. ESES offers the description of the solvent and sol-

ute domains by specifying all the intersection points between the SES

and the Cartesian grid lines. Additionally, the interface normal at each

intersection point is evaluated. Furthermore, for a given biomolecule,

the ESES software not only provides the whole surface area, but also

partitions the surface area according to atomic types.

In this paper, we will focus on another important feature of ESES,

the body-fitted or Lagrangian representation of the molecular surface.

In the previous work, the Lagrangian representation of ESES is used

only for visualization.44 Here we will quantitatively measure the per-

formance of ESES in triangulation and investigate its usage for bound-

ary integral PB solver, for example, the TABI solver,30 compared with

the finite difference interface PB solver named Matched Interface and

Boundary (MIB)21,23,45 on Eulerian representation of ESES. This paper

presents the first exploration in the literature for studying the conju-

gated Eulerian and Lagrangian surfaces of ESES, as well as the associ-

ated differential and integral forms of the Gauss's law. In addition, we

study a source–target symmetric property of the linearized PB model,

which has its significance in theory and application.

The rest of the paper is organized in the following ways. In the

section of theory and algorithm, we briefly introduce the PB model

followed by algorithms of MIB solver, TABI solver, and the SES gener-

ator ESES. In the next section, we focus on the derivation of the

source-target symmetric property of the linearized PB model. In

the validation section, we provide numerical results for the demon-

stration of ESES triangulation quality, MIB solver using its Eulerian

representation and TABI solver using its Lagrangian representation.

Following that, we show numerical results for the validation of sym-

metric properties derived in the theory and algorithm section. After a

short section about software dissemination, the paper is concluded

with a section of concluding remarks.

2 | METHODOLOGY

In this section, we will first briefly describe the Poisson-Boltzmann

(PB) model. Then, we introduce the ESES surface generator. A sum-

mary of the MIB method PB solver and the treecode-accelerated

boundary integral (TABI) PB solver will be offered next. At the end of

this section, we describe the target-source symmetric property as

stated in46 and introduce its potential applications.

2.1 | The PB model

The PB model is illustrated in Figure 2A. Consider a large domain Ω in

ℝ3 containing the solute protein. The domain Ω is divided by the mol-

ecule surface Γ into the molecule domain Ω� with dielectric constant

ϵ� and the solvent domain Ωþ with dielectric constant ϵþ, that is,

Ω¼Ω�SΩþ. Denote the boundary of Ω as ∂Ω. Charges in Ω� are par-

tial charges assigned to the centers of atoms by using a force field,

while charges in Ωþ are mobile ions described by the Boltzmann dis-

tribution. For r�ℝ3, applying Gauss's law to the charge distribution in

both Ω� and Ωþ leads to the nonlinear PB equation

F IGURE 2 (A) The Poisson–Boltzmann (PB) model. (B) The matched interface and boundary (MIB) scheme illustrated in a two-dimensional
setting with inside fictitious points in red and outside fictitious points in yellow. (C) The MIB scheme in finding the fictitious values at ði, j,kÞ and
ðiþ1, j,kÞ in the cross section of z¼ zk .
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�r�ðϵðrÞrϕðrÞÞþκ2ðrÞsinhðϕðrÞÞ¼ ρðrÞ, ð1Þ

subject to interface continuity for the potential ϕ and flux density ϵϕν,

½ϕ�Γ ¼0 and ½ϵϕν�Γ ¼0: ð2Þ

Here ν¼ðνx,νy ,νzÞ is the outer normal direction of the interface Γ,

ϕν ¼ ∂ϕ
∂ν is the directional derivative in ν, and the notation ½f�Γ ¼ fþ � f�

is the difference of the function f across the interface Γ. Note ϕ is

usually small for biomolecular environment, the linear PB equation in

which sinhðϕÞ is approximated by ϕ, is often adequately used. This

work focus on the linearized PB model.

In Equations (1) and (2), ϵ is a piecewise function for the dielectric

constants in Ω� and Ωþ. Here κ is the inverse Debye screening length

measuring ionic strength, and its modified version κ is given as

κ2 ¼ ϵþκ2. The value of κ is nonzero in Ωþ only. In our numerical

implementation, unit for the length is Å and the unit of the potential ϕ

is ec=Å. After computing ϕ, one needs to multiply it with a factor

332.0716 to convert it to the unit of kcal/mol/ec for free energy cal-

culations. The reader can refer to References 47 and 48 for more

details about definition and units of these coefficients.

The source term ρ in Equation (1) is the summation of the charge

distribution in Ω� using Delta function for Nc partial charges located

at ri, that is, ρðrÞ¼4πC
PNc

i¼1qiδðr� riÞ, where C is a constant to bal-

ance the units. Due to the singular partial charges in the source ρðrÞ,
the electrostatic potential ϕðrÞ goes to infinity as r! ri. This brings

considerable difficulties in numerical solution of the PB equation. We

will present some regularization approaches to remove the singularity

under the MIB framework.21,23 On the outer boundary ∂Ω, a Dirichlet

boundary condition can be assumed48

ϕðrÞ¼ϕbðrÞ :¼C
XNc

i¼1

qie
�κjr�rij

ϵþjr� rij : ð3Þ

It is obvious that lim jrj!∞ϕðrÞ¼0, which is actually the physical

boundary condition defined at the infinity. When ∂Ω is sufficiently dis-

tanced from the protein, Equation (3) provides a fairly accurate Debye–

Huckel approximation48 to the solution of the linearized PB equation.

In the next two subsections, we introduce the MIB method which

solves the PB model in Cartesian grids using Eulerian surface repre-

sentation and the TABI method which solves the linear PB model with

boundary elements using Lagrangian surface representation.

2.2 | The MIB method

We use the linearized PB equation as in Equation (4) to explain the

key ideas of the MIB method for solving the elliptic interface problem

with discontinuous coefficients although nonlinear PB equation can

be efficiently solved too23,45

�r� ϵðrÞrϕðrÞð Þþ κ2ðrÞϕðrÞ¼ ρðrÞ: ð4Þ

As shown in Figure 2A, the interface Γ divides the whole domain into

two separated parts, Ω� and Ωþ. The jump conditions across the

interface are assumed to be

½ϕ�Γ ¼ g0ðrÞ, ð5Þ

½ϵϕν�Γ ¼ g1ðrÞ: ð6Þ

Note the physical meaning of g0 and g1 is the jump in electrostatic

potential and flux density across the interface Γ, thus g0 and g1 are

zeros in the physical background of electrostatic potential ϕ. How-

ever, we keep the nonhomogeneous form of g0 and g1 here to empha-

size the capability of MIB method to treat the nonhomogeneous

interface jump conditions.

Consider a uniform Cartesian grid partition of the domain Ω as

shown in Figure 2B, it is well known that the standard finite difference

schemes lose their designed convergence near the interface and the

interface jump conditions have to be used to restore the accuracy. To

this end, all the grid points in Ω are classified into two types, the regu-

lar ones and the irregular ones. An irregular grid point is defined as a

node at which the standard finite difference scheme involves grid

points across the interface, that is, at least one of its four (2D) or six

(3D) neighboring points is from the other side of the interface as illus-

trated in Figure 2B for a 2D situation. The complement set to the set

of irregular grid points defines the set of regular grid points. At a regu-

lar point, a centered difference discretization of Equation (4) is carried

out, which involves a grid node ðxi,yj ,zkÞ and its six neighboring points.

At each irregular point, there are two values: the true value ϕðxi ,yj,zkÞ
and the fictitious value fðxi ,yj,zkÞ. The fictitious values can be consid-

ered as the extended value from one domain to the other, whose

values are obtained by interpolation schemes involving both the dif-

ferential equation and the interface jump conditions. In the MIB

scheme, the finite difference approximations at irregular points will be

modified by using fictitious values from the other side of the interface.

For example, consider a two-dimensional cross section z¼ zk shown in

Figure 1C, and denote ϕi,j,k ¼ϕðxi,yj ,zkÞ, we have the following modi-

fied finite difference approximation for the x derivative

∂2

∂x2
ϕiþ1,j,k ≈

1
Δx2

ðfi,j,k�2ϕiþ1,j,kþϕiþ2,j,kÞ, ð7Þ

where fi,j,k is a fictitious value defined at ðxi,yj ,zkÞ. The modified finite

difference approximations at irregular points maintain the second order

of accuracy, provided that the fictitious values are accurately estimated.

In the MIB scheme, by applying the interface jump conditions in

Equations (5) and (6), a pair of fictitious values fi,j,k at ðxi,yj ,zkÞ and

fiþ1,j,k at ðxiþ1,yj,zkÞ will be represented as a linear combination of

function values on a set of neighboring nodes Si,j,k and jump data

ðg0,g1Þ. For example,

fi,j,k ¼
X

ðxI ,yJ ,zK Þ � Si,j,k
wI,J,KϕI,J,K þw0g0þw1g1: ð8Þ
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The major task of a particular MIB approximation is to determine the

points set Si,j,k and the representation weights wI,J,K , w0, and w1 via

discretizing Equations (5) and (6). In order to obtain the fictitious

values at the two irregular points (red) located at ði, j,kÞ and ðiþ1, j,kÞ,
10 regular values of ϕ at the green and red (overlapped on green)

locations in the cross section of z¼ zk as illustrated in Figure 1C will

be involved. Similarly, in the cross sections x¼ xio , six more regular

points in Ωþ or Ω� are involved to interpolate the derivatives of ϕþ or

ϕ� in z direction respectively. Thus in general, we need totally 16 reg-

ular values of ϕ. When the interface is more irregular, the 16 points

possibly cannot be located, then more complicated interpolation

schemes will be needed as detailed in References 49 and 50. Finally,

Equation (8) will be substituted into Equation (7) to modify the x

derivative approximation. When all necessary x, y, and z derivatives

are regularly or irregularly represented using ϕ or f at the grid points,

a linear algebraic system of equations in discretizing Equation (4) is

generated. The Eulerian representation of ESES can provide the posi-

tion of ðxio ,yj,zkÞ where the mesh line fðx,y,zÞjy¼ yj,z¼ zkg intersects

the molecular surface and the normal direction of the surface

at ðxio ,yj ,zkÞ.
Another issue is the regularization of the source singularity

as seen on the right hand side of Equation (4), where

ρðrÞ¼4πC
PNc

i¼1qiδðr� riÞ. Our strategy is to use the Green's function-

based decomposition incorporated with the MIB schemes to treat the

source singularities while maintain the second-order accuracy. Since

this paper focuses on surface and interface treatment, we omit all the

details for the treatment of charge singularities, and interested readers

can refer to References 21 and 23. All MIBPB results reported in this

work are based on the rMIB package developed in Reference 23.

2.3 | The boundary integral PB solver

In this subsection we describe the boundary integral method for com-

puting the electrostatic surface potential and solvation energy.30,51

We present the boundary integral form of the linearized PB model, the

discretization of the boundary integral equations, the treecode algorithm

for accelerating the matrix-vector product, and the preconditioning

scheme to alleviate the rising condition number when the triangulation

quality is deteriorated due to complex geometry. Following the tradition

of boundary integral method, we use x and y to represent the spacial

position as opposed to the previously used r. We also denote Ω1 ¼Ω�

and Ω2 ¼Ωþ. Similarly, ϵ1 ¼ ϵ� and ϵ2 ¼ ϵþ will also be used.

2.3.1 | The boundary integral form of the linearized
PB model

This section summarizes the well-conditioned boundary integral form

of the linear PB model we employ.25,30 Applying Green's second iden-

tity and properties of fundamental solutions to Equation (1) yields the

electrostatic potential in each domain,

ϕðxÞ¼
ð
Γ
G0ðx,yÞ ∂ϕðyÞ

∂ν
� ∂G0ðx,yÞ

∂νy
ϕðyÞ

� �
dSy

þPNc

k¼1
qkG0ðx,ykÞ, x�Ω1,

ð9aÞ

ϕðxÞ¼
ð
Γ
�Gκðx,yÞ ∂ϕðyÞ

∂ν

�

þ∂Gκðx,yÞ
∂νy

ϕðyÞ
�
dSy, x�Ω2,

ð9bÞ

where G0ðx,yÞ and Gκðx,yÞ are the Coulomb and screened Coulomb

potentials,

G0ðx,yÞ¼ 1
4πjx�yj , Gκðx,yÞ¼ e�κjx�yj

4πjx�yj : ð10Þ

Then applying the interface conditions in Equation (2) with the differ-

entiation of electrostatic potential in each domain yields a set of

boundary integral equations relating the surface potential ϕ1 and its

normal derivative ∂ϕ1=∂ν on Γ,

1
2

1þεð Þϕ1ðxÞ ¼
ð
Γ
K1ðx,yÞ ∂ϕ1ðyÞ

∂ν
þK2ðx,yÞϕ1ðyÞ

� �

dSyþS1ðxÞ, x�Γ,
ð11aÞ

1
2

1þ1
ε

� �
∂ϕ1ðxÞ
∂ν

¼
ð
Γ
K3ðx,yÞ ∂ϕ1ðyÞ

∂ν
þK4ðx,yÞϕ1ðyÞ

� �

dSyþS2ðxÞ, x�Γ,
ð11bÞ

where ε¼ ε2=ε1. As given in Equations (12a), (12b), and (16), the ker-

nels K1,2,3,4 and source terms S1,2 are linear combinations of G0, Gk ,

and their first and second-order normal derivatives.25,30

K1ðx,yÞ¼G0ðx,yÞ�Gκðx,yÞ,
K2ðx,yÞ¼ ε

∂Gκðx,yÞ
∂νy

� ∂G0ðx,yÞ
∂νy

,
ð12aÞ

K3ðx,yÞ¼ ∂G0ðx,yÞ
∂νx

�1
ε

∂Gκðx,yÞ
∂νx

,

K4ðx,yÞ¼ ∂2Gκðx,yÞ
∂νx∂νy

� ∂2G0ðx,yÞ
∂νx∂νy

,

ð12bÞ

where the normal derivative with respect to x is given by

∂Gðx,yÞ
∂νx

¼�νðxÞ �rxGðx,yÞ¼� P3
m¼1

νmðxÞ∂xmGðx,yÞ, ð13Þ

the normal derivative with respect to y is given by

∂Gðx,yÞ
∂νy

¼ νðyÞ �ryGðx,yÞ¼
P3
n¼1

νnðyÞ∂ynGðx,yÞ, ð14Þ

the second normal derivative with respect to x and y is given by
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∂Gðx,yÞ
∂νy∂νx

¼�
X3
m¼1

X3
n¼1

νmðxÞνnðyÞ∂xm ∂ynGðx,yÞ: ð15Þ

and the source terms S1,2 are

S1ðxÞ¼ 1
ε1

XNc

k¼1

qkG0ðx,ykÞ, S2ðxÞ¼ 1
ε1

XNc

k¼1

qk
∂G0ðx,ykÞ

∂νx
: ð16Þ

Once the potential and normal derivative of the potential from

Equations (11a) and (11b) are solved, potential at any point inside the

molecule can be computed via Equations (9a) and (9b) or a numerically

more accurate formulation as mentioned in Reference 25:

ϕ1ðxÞ¼
ð
Γ
K1ðx,yÞ ∂ϕ1ðyÞ

∂ν
þK2ðx,yÞϕ1ðyÞ

� �
dSyþS1ðxÞ, x�Ω1: ð17Þ

With potential and its normal derivative on Γ, the electrostatic free

energy can be obtained by

Efree ¼1
2

XNc

k¼1

qkϕ1ðykÞ

¼1
2

XNc

k¼1

qk

ð
Γ
K1ðyk ,yÞ

∂ϕ1ðyÞ
∂ν

þK2ðyk ,yÞϕ1ðyÞ
� �

dSyþS1ðykÞ
� �

:

ð18Þ

The electrostatic solvation energy can also be obtained by

Esol ¼1
2

XNc

k¼1

qkϕ
reacðykÞ

¼1
2

XNc

k¼1

qk

ð
Γ
K1ðyk ,yÞ

∂ϕ1ðyÞ
∂ν

þK2ðyk ,yÞϕ1ðyÞ
� �

dSy,

ð19Þ

where ϕreacðxÞ¼ϕðxÞ�S1ðxÞ is the reaction field potential.25,30 In our

numerical results, we report many results involving solving PB equa-

tion and calculating the electrostatic solvation energy.

2.3.2 | The discretization of boundary integral
equations

The integrals in Equations (11a) and (11b) can be discretized by cen-

troid collocation, which is popular due to its simplicity.30 Alternatively,

it can also be discretized using other more complicated approaches

such as node-patch collocation,52,53 curved triangles,51 or Galerkin's

method54 with a trade-off of accuracy and efficiency. Here we pro-

vide the centroid collocation approach.

Letting xi, i¼1,…,N denote the triangle centroids of the N trian-

gular elements, the discretized Equations (11a) and (11b) have the fol-

lowing form for i¼1,…,N,

1
2

1þεð Þϕ1ðxiÞ ¼ PN
j¼1
j≠ i

K1ðxi,xjÞ ∂ϕ1ðxjÞ
∂ν

þK2ðxi,xjÞϕ1ðxjÞ
� �

Δsj

þS1ðxiÞ,

ð20aÞ

1
2

1þ1
ε

� �
∂ϕ1ðxiÞ

∂ν
¼ PN
j¼1
j≠ i

K3ðxi ,xjÞ ∂ϕ1ðxjÞ
∂ν

þK4ðxi ,xjÞϕ1ðxjÞ
� �

Δsj

þS2ðxiÞ,
ð20bÞ

where Δsj is the area of the jth boundary element for j¼1,…,N. The

term j¼ i is omitted to avoid the kernel singularity. Equations (20a)

and (20b) give a linear system Ax¼ b, where x contains the surface

potentials ϕ1ðxiÞ and normal derivatives ∂ϕ1ðxiÞ
∂ν , weighted by the ele-

ment area Δsi, and b contains the source terms S1ðxiÞ,S2ðxiÞ. The sys-

tem is solved by the GMRES iterative method, which requires a

matrix-vector product in each iteration.55 Since the matrix is dense,

computing the product by direct summation requires OðN2Þ opera-

tions, which is prohibitively expensive when N is large. These difficul-

ties can be overcome by fast algorithms for N-body interactions such

as treecode30,56 and Fast Multipole Methods.27,54 In the next

section we describe the treecode algorithm used to accelerate the

matrix-vector product.

2.3.3 | Treecode

We summarize the treecode algorithm and refer to previous work for

more details.35,57-59 The matrix-vector product Ax for Equations (20a)

and (20b) has the form of N-body potentials,

Vi ¼
XN

j¼1, j≠ i

qjGðxi,xjÞ, i¼1,…,N, ð21Þ

where G is a kernel, xi,xj are centroids (also called particle locations in

this context), and qj is a charge associated with xj. To this end, the qj

in Equation (21) is equivalent to the Δsjϕ1ðxjÞ or Δsj
∂ϕ1ðxjÞ

∂ν in

Equations (20a) and (20b) and G is one of the kernels of K1�4. To eval-

uate the potentials Vi rapidly, the particles xi are divided into a hierar-

chy of clusters having a tree structure in a 2D illustration as in

Figure 3A. The root cluster is a cube containing all the particles and

subsequent levels are obtained by dividing a parent cluster into chil-

dren.57 The process continues until a cluster has fewer than N0 parti-

cles (N0 is a user-specified parameter representing the maximum

number of particles per leaf, e.g., N0 ¼3 in Figure 3A). Then Vi is eval-

uated as a sum of particle–particle interactions and particle–cluster

interactions, which are depicted in Figure 3B,

Vi ≈
X
c � Ni

X
xj � c

qjGðxi,xjÞ þ
X
c � Fi

Xp
jjkjj¼0

akðxi,xcÞmk
c , ð22Þ

where c denotes a cluster, and Ni,Fi denote the near-field and far-field

clusters of particle xi. The first term on the right is a direct sum for

particles xj near xi, and the second term is a pth-order Cartesian Tay-

lor approximation about the cluster center xc for clusters that are

well-separated from xi.
35 Cartesian multi-index notation is used with

k¼ðk1,k2,k3Þ,ki � ℕ, jjkjj ¼ k1þk2þk3,k!¼ k1!k2!k3!. A particle xi and
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a cluster c are defined to be well-separated if the multipole accep-

tance criterion (MAC) is satisfied, rc=R≤ θ, where rc is the cluster

radius, R¼ jxi�xcj is the particle–cluster distance, and θ is a user-

specified parameter.57

The accuracy and efficiency of the treecode is controlled by the

combination of order p, MAC parameter θ, and maximum particles per

leaf N0. Using the treecode, the operation count for the matrix-vector

product is OðNlogNÞ, the factor N is the number of particles xi , and

the factor logN is the number of levels in the tree.

2.3.4 | Preconditioning

In order to precondition Krylov subspace methods in solving Ax¼ b,

taking the left-precondition scheme as an example, we seek a precon-

ditioning matrix or a preconditioner M such that two conditions are

satisfied:

(1) M is similar to A such that M�1A has improved condition com-

pared to A thus less number of iterations are required in solving

M�1Ax¼M�1b compared to solving Ax¼ b;

(2) M�1z¼ y can be efficiently computed, which is equivalent to solv-

ing y from My¼ z.

Conditions (1) and (2) cannot be improved concurrently and a tra-

deoff must be made.

The design of our preconditioner is motivated from the observa-

tion that in electrostatic interactions, which is also the interac-

tions between boundary elements in solving integral equations,

the short range interactions are smaller in number of interactions

but more significant in strength than the long range interactions,

which are large in number of interactions and computationally

more expensive. Due to their large numbers, the long interactions

are calculated by multipole expansions. This gives us the ideas

that for a preconditioner of A, we might use short range interactions

represented by the matrix M to approximate all interactions, ignoring

long range interactions. Our picked short range interactions are

between elements on the same leaf only. This choice has great advan-

tages in efficiency and accuracy for solving My¼ z.

The most important advantage of this designed preconditioning

matrix M is that computing y¼M�1z or equivalently solving y from

My¼ z can be rapidly computed. As seen with details in Reference 60,

by using a permutation operation, the M matrix is a block diagonal

matrix such that My¼ z can be solved using direct method, for exam-

ple, LU factorization by solving each individual Miyi ¼ zi. Here each Mi

is a square nonsingular matrix, which represents the interaction

between particles/elements on the ith leaf of the tree. It is worthy to

note that the efficiency is not affected even when Mi has a large con-

dition number since direct solver is used for solving My¼ z.

2.4 | ESES for conjugated Eulerian and Lagrangian
surfaces

The ESES is a software developed by Liu et al. in 201744 for the con-

struction of SESs in the Eulerian representation. ESES can robustly

generate meshes readily available for being used in solving the PB or

PNP type of equations in the Cartesian grid. The surface information

in ESES is provided in terms of intersection points between the grid

lines and the interface, that is, the data for the coordinates of each

intersection point and the surface normal at the point. Additionally,

each grid point can be labeled as either inside or outside the interface.

This information is useful for initializing the PB equation and for the

enforcement of interface conditions. The analytical nature of inter-

section point evaluation of the present ESES enables high order PB

and PNP solvers to achieve their designed order of convergence or

accuracy in the L1 norm, which is essential in evaluating the perfor-

mance of these elliptic interface methods for complex biomolecular

surfaces. The analytical representation of potential SES patches is first

computed based on Connolly's work37 where accurate convex

patches, saddle patches and concave patches are generated and

stored for fast access. Each Cartesian grid point is then classified

either as inside the SES or outside the SES based on its relation with

respect to these three types of patches in its neighborhood. For each

Cartesian edge with one Cartesian end point inside the SES and the

other outside, its analytical intersection position and corresponding

normal direction with respect to the outermost surface patch is com-

puted. There are three types of patches generated in the SES, namely,

(A) (B)

F IGURE 3 Details of treecode. (A) Tree structure of particle clusters. (B) particle–cluster interaction between particle xi and cluster c¼fxjg.
xc, cluster center; R, particle-cluster distance; rc, cluster radius.
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convex patches, saddle patches, and concave patches. These convex,

saddle, or concave patches are determined by singletons, pairs, or trip-

lets of atoms, respectively.

After the completeness of the Cartesian representation of the

SES, the intersection of the grid points and the SES can be connected

to form a triangulated surface by using the marching cubes algo-

rithm.61 The initial goal for the triangulation is for visualization. It

turned out that this triangulation renders a conjugated Lagrangian

representation of the SES, which can be used to solve the boundary

integral PB equations. There are concerns that the triangles formed by

ESES are not “equilateral-alike” and thus might affect the conver-

gence of GMRES method for solving the discretized integral equa-

tions. Fortunately, as we show below, the preconditioning schemes as

described above with details in60 can resolve the issue, making the

ESES Lagrangian representation another useful option as a body-fitted

ESES surface.

2.5 | The source–target symmetric properties

In this section we restate an interesting symmetric property of linear-

ized PB model for the electrostatic reaction field potential induced by

a unit point charge eA ¼1 inside a cavity, which is immersed in sol-

vent. The property is illustrated in Figure 4 such that the reaction field

potential at location B induced by a unit point charge at location A is

the same as the potential at location A induced by that point charge

eB ¼1 at location B, that is,

ϕreac
A ðrBÞ¼ϕreac

B ðrAÞ: ð23Þ

2.5.1 | Derivation

This symmetric property can be derived by following the procedure as

described in Reference 46, we rephrase it in a simplified way for

reader's convenient access.

We try to determine the work WA to bring a charge eA from infin-

ity to its position rA. Due to the presence of dielectric (with ϵ2) outside

of the cavity, the determination of work WA is nontrivial. The dielec-

tric is polarized by the point charge eA, and this polarization leads to a

potential ϕreac
A at rA whose gradient is the reaction field generated by

the charge eA. As described in Reference 46, WA can be derived from

a charging process which increases the point charge at rA with infini-

tesimally small steps from zero to its actual value eA. At a certain stage

of this process the charge will have reached the value λeA where

λ� ½0,1�. At that stage, the potential at rA due to the dielectric

is λϕreac
A .

The energy to bring a charge element ðδλÞeA at rA against the

reaction field of the charge λeA, is then given by,

δWA ¼ λϕreac
A ðrAÞ � ðδλÞeA: ð24Þ

Therefore the energy WA is given by the integration of λ from 0

to 1,

WA ¼
ð1
0
λϕreac

A ðrAÞeAδλ¼1
2
eAϕ

reac
A ðrAÞ: ð25Þ

At the next step when another charge eB is brought to rB , the cor-

responding energy consists of three parts:

• eBϕ
coul
A ðrBÞ: the energy to move eB against the field due to the

charge eA. This part is generated by the Coulombic interaction

between the charges eB and eA.

• eBϕ
reac
A ðrBÞ: the energy to move eB against the reaction field at rB

due to the charge eA.

• 1
2eBϕ

reac
B ðrBÞ: the energy to move eB against its own reaction field,

which can be similarly derived as in Equation (25).

Therefore the work to bring the charge eB to its location rB

would be,

WB ¼ eBϕ
coul
A ðrBÞþeBϕ

reac
A ðrBÞþ1

2
eBϕ

reac
B ðrBÞ: ð26Þ

Altogether the total energy W to bring two charges eA and eB into

the cavity becomes,

F IGURE 4 The symmetric property inside a solvated cavity.
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W¼WAþWB ¼1
2
eAϕ

reac
A ðrAÞþeBϕ

coul
A ðrBÞþeBϕ

reac
A ðrBÞþ1

2
eBϕ

reac
B ðrBÞ:

ð27Þ

Similarly, the energy necessary to bring these two charges into

the cavity at the same locations but in the reverse sequence is,

W¼1
2
eBϕ

reac
B ðrBÞþeAϕ

coul
B ðrAÞþeAϕ

reac
B ðrAÞþ1

2
eAϕ

reac
A ðrAÞ: ð28Þ

Since the energy does not depend on the sequence in which the

charges are brought into the cavity, we can equate Equations (27) and

(28) to find,

eBϕ
coul
A ðrBÞþeBϕ

reac
A ðrBÞ¼ eAϕ

coul
B ðrAÞþeAϕ

reac
B ðrAÞ: ð29Þ

The Coulomb part in Equation (29) is proven to be equal in section 12

of Reference 46 as,

eBϕ
coul
A ðrBÞ¼ eAϕ

coul
B ðrAÞ, ð30Þ

which results in the equality,

eBϕ
reac
A ðrBÞ¼ eAϕ

reac
B ðrAÞ: ð31Þ

Hence, the energy of a point charge in the reaction field of

another charge is equal to the energy of the second charge in the

reaction field of the first one. For a particular case when the the point

charges eA ¼ eB ¼1 we have Equation (23). Similarly, when there are

mobile ions appeared in solvent described by the Boltzmann distribu-

tion, the same equality could be derived for a linearized PB model.

2.5.2 | Application

This symmetric property is physically sound and can have potential

applications in assisting the algorithm development and numerical

analysis. Here we elaborate one of these applications by connecting

to the boundary integral PB solver TABI in the previous section. This

application is inspired by work from Juffer et al.62 and has potential

application in computing protein pKa.5,62,63

Consider the discretized forms of Equations (20a) and (20b) for

governing potential and its normal derivatives as

Sx¼Bq, ð32Þ

where x�ℝ2N is the vector of potential and its normal derivative at

the collocation location, q�ℝNc is the vector of charges at atomic cen-

ters, S�ℝ2N�2N and B�ℝ2N�Nc are the corresponding matrices to

make Equations (20a) and (20b) valid. Similarly, the discretized form of

Equation (17) for ϕ�ℝNc , R�ℝNc�2N, and D�ℝNc�Nc is

ϕ¼ϕreacþϕcoul ¼RxþDq, ð33Þ

and that of Equations (18) and (19) is

Efree ¼1
2
qTϕ¼1

2
qTðRS�1BþDÞq¼1

2
qTWq, ð34Þ

and

Esol ¼1
2
qTϕreac ¼

1
2
qTRS�1Bq¼1

2
qTAq, ð35Þ

where A¼RS�1B is symmetric in the sense that

Aij ¼ eTi Aej ¼ eTj Aei ¼Aji, ð36Þ

where ei is the unit vector with ith entry nonzero. Note the symmetry

of A is not straightforward to prove, however the middle equality in

Equation (36) is valid since it implies exactly the symmetric property

we have stated. i.e., the equivalence of the reaction field potential

energy for unit charge at ri under the potential induced by a unit

charge at rj and the reaction field potential energy for unit charge at rj

under the potential induced by a unit charge at ri. With the symmetry

of A, which indicates the symmetry of W since D is symmetric too, we

can calculate the site–site interaction in Reference 5 as

4Gij ¼ tTi Wtj ¼1
2
ðtiþ tjÞTWðtiþ tjÞ�1

2
tTi Wti�1

2
tTj Wtj: ð37Þ

reducing from solving N2
t systems to NtðNt�1Þ=2þNt systems, where

Nt is the number of titration sites whose proton will change under dif-

ferent pH environment. Note ti �ℝNc is the charge vector with all

entries zero except qi at the ith position.

3 | RESULTS AND DISCUSSIONS

In this section we will numerically demonstrate that ESES can gener-

ate high fidelity SESs with both Eulerian and Lagrangian representa-

tions. Following that, we use ESES together with TABI and MIB PB

solvers to verify the symmetric properties as derived in the section of

theory and algorithms. All calculations use solute dielectric constant

ϵ1 ¼1 and solvent dielectric constant ϵ2 ¼80, and we set the ionic

concentration Is as zero by focusing only on the Poisson's equation or

Gauss's law. Similar results can be achieved for nonzero ionic concen-

trations. For test cases on spherical cavities with analytical solution,

the tolerance for bi-conjugate gradient solver used by MIB solver and

the tolerance for GMRES used by TABI and HOBI solver are all set as

10�10. Other than that, the tolerance for MIB solver is set as 10�6

and the tolerance for TABI solver is set as 10�4 as the default values.

In TABI solver,30 the treecode parameters are set as (Maximum

Acceptance Criterion) MAC parameter θ¼0:8, Taylor expansion order

p¼3, and maximum number of particles per leaf N0 ¼100.

All code used are run in serial. When large problems are involved,

parallel computing can be partially implemented as specified below.
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The ESES code44 (https://github.com/WeilabMSU/ESES) can be run

with OpenMP protocol. The HOBI code51 (https://sourceforge.net/

projects/hobipb/) can be implemented with MPI. The C++ TABI

code53 (https://github.com/Treecodes/TABI-PB) can be implemented

with MPI and GPU in a hybrid parallelization. The Fortran TABI code30

(https://github.com/gengwh/TABI-PB) can be implemented in MPI (in

preparation64) utilizing the parallel algorithm developed recently.65

The parallelization of MIB solver is within our future research plans.

3.1 | ESES performance

In this paper, we will only lightly touch ESES's Eulerian representation.44

Our main focus is on its Lagrangian representation. These results are

computed using a 13inch MacBook Pro with intel core-i5 processor and

16 GB of RAM. We first discuss the associated triangulation quality.

3.1.1 | Triangulation quality

With ESES, the triangles forming the Lagrangian representation of the

SES are generated by connecting the vertices using marching cubic

algorithms.61 These vertices are intersections between surface and

the mesh lines. In the earlier work,44 these triangles are only used to

visualize the molecular surface. We here extend their usage being

applied by the boundary integral PB solver. These triangles have good

fidelity to the molecular surface. But the triangulation quality as

termed from the finite element or boundary element community is

crucial for numerical simulations. In particular, triangles that are quasi-

uniform (essentially the same size) and similar to equilateral triangles

are preferred. As shown in Figure 5, we compare the triangulation

quality of the triangulated SES on protein 1AJJ generated by ESES44

and NanoShaper.39 When similar number of triangles are generated

by ESES and NanoShaper, we can see the distribution of areas of tri-

angles from NanoShaper is more centered around 0.1Å2 than that

from ESES while the distribution of maximum angles of triangles from

NanoShaper is closer to 60 ∘ than that from ESES.

Fortunately, our work on preconditioning scheme60 as briefly

explained in the theory and algorithm section previously can alleviate

this pain and guarantees TABI-PB solver's rapid convergence when

ESES triangulation is used. This will be shown with examples in the

next subsection.

3.1.2 | TABI using Lagrangian ESES versus TABI
using NanoShaper

There are extensive studies on the Eulerian SES representation from

ESES as opposed to the Lagrangian representation fromMSMS38 in Ref-

erence 44. We provide an example below for solving the PB model on

triangulated SES generated by ESES and NanoShaper39 using the TABI

solver as shown in Table 1. When we refine the mesh, we adjust the

parameters in ESES (Column 1) and NanoShaper (Column 2) to generate

similar number of triangles N as seen in Columns 4 and 5. Note at the

same time, ESES has the number of Cartesian grid points as shown in

Column 3. From this example, we can see as the mesh is refined the

electrostatic solvation energy computed by TABI solver using ESES in

Column 6 is approaching to that using NanoShaper in Column 7,

resulting in smaller difference ΔEsol as seen in Column 8. The total

CPU time is similar when different surfaces are used as shown in Col-

umns 9 and 10. This owes to the preconditioning scheme,60 similar

number of iterations are used when different surfaces from ESES and

NanoShaper are used. We had more tests on some other proteins and

the results showed the similar pattern thus we only report this exam-

ple here. It shows that when its Lagrangian surface representation is

used for boundary integral PB solver, ESES works as well as popular

surface generators such as NanoShaper and MSMS.

3.1.3 | MIB using Eulerian ESES versus MIB using
Eulerian MSMS

Following by the validation of Lagrangian representation of ESES

using TABI solver, we next move to the validation of Eulerian

F IGURE 5 Triangulation quality comparison between Eulerian solvent excluded surface (ESES) and NanoShaper using SES of protein 1AJJ:
(A) distribution in terms of kernel density estimate (KDE) of triangles' areas in Å2; (B) distribution of triangles' maximum angles in degrees.
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representation of ESES using MIB solver. Just like we need the

well-established NanoShaper for comparison, here we use MSMS

instead.38 Note MSMS and NanoShaper had a direct generation of

a Lagrangian SES, and Zhou in his thesis43 developed a Fortran

wrapper of MSMS to convert the Lagrangian representation to the

Eulerian representation, which is the reason why we use

MSMS here.

We calculate the solvation energies for three different molecules:

one spherical cavity of radius 2Å with a centered unit charge, and pro-

teins 2pde and 1aho. For the spherical cavity, we reported the

result in Table 2. From this table, we can see when MSMS surface

with a fixed density is used, the solvation energy converges to the

case using the finest mesh (from top to bottom with h changes from

1 to 0.125). When ESES surface is used, the same pattern can be

observed. The most significant pattern from this table is that MSMS

results with refined density converges to ESES's with sufficiently fine

mesh (h¼0:125).

For the two proteins, we report the results in Figure 6. Depending

on the size of the protein, we use MSMS density 20, 30, 100 for pro-

tein 1PDE, and use MSMS density 10, 20, 30 for protein 1AHO.

Results in the figure show that increasing MSMS density yields a sol-

vation energy approaching that of ESES.

3.1.4 | MIB using Eulerian ESES versus TABI using
Lagrangian ESES

We next provide an example showing the connection between the

Eulerian representation and Lagrangian representation of ESES. These

two representations are used by solving the PB model using finite dif-

ference methods with interface treatment, that is, the MIB solver23,45

and using the boundary integral method that is, the TABI solver.30

The results on Protein 1AJJ are shown in Table 3. Here we have no

control about the number of the triangles with the Lagrangian rep-

resentation. Once the mesh size h in Column 1 is determined for the

Eulerian representation, the number of grid points for MIB in Column

2 and the number of triangles in Column 3 are determined as well.

We can see the solvation energy from MIB in Column 4 and that from

TABI in Column 5 are approaching to each other as mesh refined.

From the CPU time in Columns 7 and 8, the TABI solver is slower at

the very beginning but shows advantage in convergence speed when

the mesh is refined due to the OðNlogNÞ treecode acceleration.

3.2 | Validation of the symmetric properties

After the tests of ESES with both Eulerian and Lagrangian representa-

tions, we further validate the source–target symmetric property

described previously for different types of molecular structures. In the

subsections below, we consider two hypothetical molecules with sim-

ple geometry and a protein 1AJJ. All of these molecules have two

locations rA and rB inside the molecular surface as the interchangeable

source and target locations. We calculated the reaction field potential

ϕR
AðrBÞ at rB induced by a unit charge at rA and the reaction field

potential ϕR
BðrAÞ at rA induced by a unit charge at rB. These two quan-

tities are theoretically equal as derived previously. Our numerical

methods validate this source–target symmetric property while the

advantage and limitation of the methods can also be seen from these

TABLE 1 Computing electrostatic solvation energy of a protein (PDB 1AJJ) with TABI solver using two molecular surface triangulation
software Eulerian solvent excluded surface (ESES) and NanoShaper (NS): Densities are used as a parameter to control the number of triangular
faces N; Dimension (for ESES only) is the number of grid points in each direction; ΔEsol is the difference of solvation energy calculated using TABI
solver with ESES and NanoShaper surface generators.

Densities
Dimension

N Esol (kcal/mol) CPU time (s)

ESES NS ESES ESES NS ESES NS ΔE ESES NS

1.12 0.90 28*30*33 5084 5096 �1222.20 �1261.92 39.72 2.18 2.14

0.80 1.26 39*42*46 10124 10168 �1180.16 �1188.74 8.58 5.70 5.55

0.56 1.80 56*60*65 20640 20884 �1157.24 �1160.53 3.29 15.16 15.17

0.40 2.50 78*84*91 40752 40772 �1146.93 �1148.53 1.60 34.89 34.05

0.28 3.58 111*119*130 83232 83640 �1141.76 �1142.54 0.77 76.33 76.84

0.20 5.00 155*167*182 163276 163292 �1138.94 �1139.26 0.32 196.14 193.70

TABLE 2 Computing electrostatic
solvation energy of a spherical cavity
with a centered charge using MIB solver
on the Lagrangian representation from
Eulerian solvent excluded surface (ESES)
and from MSMS.

h MSMS (den = 10) MSMS (den = 20) MSMS (den = 100) ESES

1 �82.48219907 �82.27048894 �82.16175924 �79.58699949

0.5 �82.52123400 �82.32504614 �82.19843970 �82.01643791

0.25 �82.53823124 �82.33111065 �82.21280699 �82.28426183

0.125 �82.53534892 �82.34891499 �82.21596355 �82.26497101
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test cases. We focus on the Poisson model (κ¼0) while the linearized

Poisson-Boltzannn model (κ≠0) can be verified in a similar manner.

We mainly used the MIB solver but in one case the high order bound-

ary integral (HOBI) PB solver51 is used for the pursuit of higher accu-

racy. These results are computed using a 15inch MacBook Pro with

intel core-i7 processor and 16 GB of RAM.

3.2.1 | A spherical cavity

This example considers a spherical atom centered at the origin

r0 ¼ð0,0,0Þ and with radius 2Å. Our source and target locations are at

rA ¼ð1,0,0Þ and rB ¼ð1,1,0Þ. We have used the MIB PB solver23 to

calculate the reaction field potentials ϕR
AðrBÞ and ϕR

BðrAÞ as reported in

Table 4. Meanwhile, we also applied the HOBI PB solver for compari-

son as reported in Table 5. The exact reaction field potential equals to

�207:124201675656 kcal/mol/ec, which can be found using the

scheme described in References 47 and 66. With this reference value,

we can calculate the errors and orders as shown in both Tables 4 and

5. Here the reported errors are absolute errors compared with exact

values.

Form Table 4, we can see that ϕR
AðrBÞ, ϕR

BðrAÞ, and jϕR
AðrBÞ�ϕR

BðrAÞj
all converge approximately in second order. This can be further

verified by result shown in Table 5 for the same case solved by the

high-order boundary integral PB solver.51 In Table 5, the number of

the triangles is quadrupled each step, thus the length is halved. We

observed second order convergence pattern in average.

3.2.2 | Molecule with two overlapping
spherical atoms

In this test case, we consider a molecule of two atoms. In particular

we have the radius of the sphere A as RA ¼3:0001 with its center on

the x-axis at rA ¼ð�2,0,0Þ and the radius of the sphere B as

RB ¼2:0001 with its center on the x-axis at rB ¼ð2,0,0Þ. The reaction

field potential ϕR
A is induced by the charge eA ¼1 located at rA and the

reaction field potential ϕR
B is induced by the charge eB ¼1 located at

rB. Table 6 shows the reaction field potentials for different grid sizes

from the MIB PB solver. Since the actual potentials are not available,

errors of the reaction field potentials for different grid sizes are calcu-

lated by comparing with the reaction field potential for h¼0:125, the

finest grid. From this case, we can see approximately second order

convergence for ϕR
AðrBÞ, ϕR

BðrAÞ and jϕR
AðrBÞ�ϕR

BðrAÞj.

3.2.3 | Protein 1AJJ

Finally in validating the symmetric properties we considered

the protein 1AJJ whose molecular surface is generated with ESES.
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F IGURE 6 Computing electrostatic solvation energy for the proteins 2PDE (left) and 1AHO (right) using matched interface and boundary
solver on the Lagrangian representation from Eulerian solvent excluded surface and from MSMS.

TABLE 3 Computing electrostatic
solvation energy of protein 1AJJ using
TABI solver30 on the Lagrangian
representation and using matched
interface and boundary (MIB) solver23 on
the Eulerian representation of the
molecular surface, both generated by
Eulerian solvent excluded surface (ESES);
zero ionic strength.

Esol (kcal/mol) CPU time (s)

h Dimension N MIB TABI ΔE MIB TABI

1 31*34*37 6464 �1137.35 �1208.98 71.63 0.95 2.97

0.5 62*67*73 25,956 �1138.04 �1153.46 15.42 8.80 20.45

0.25 124*134*146 104,412 �1139.25 �1140.60 1.35 107.04 116.53

0.125 248*267*292 418,544 �1139.37 �1137.48 �1.89 1312.65 522.24
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We report the result using the Eulerian representation thus the PB

equation was solved using the Cartesian grid-based MIB method.

In this simulation, we first removed all the atomic charges and then

put one unit charge at one of the two locations

rA ¼ð�0:169,7:698,13:415Þ or rB ¼ð4:942,6:666,12:698Þ such that

jrA� rBj ¼5Å, and the location rA or rB will be the location we can cal-

culate the induced reaction field potential ϕR
AðrBÞ or ϕR

BðrAÞ. Table 7

shows the reaction field potentials, errors, and orders for different

grid sizes. Since the actual potentials are not available, errors of the

reaction field potentials for different grid sizes are calculated by

comparing with the reaction field potential for h¼0:125, the finest

grid. From this case, we can see approximately second-order conver-

gence for ϕR
AðrBÞ, ϕR

BðrAÞ. The result of jϕR
AðrBÞ�ϕR

BðrAÞj is saturated at

the finest grid h¼0:125, which could be explained by the reason that

the boundary condition is given as 1=jr� rAj or 1=jr� rBj on the

boundary. This is the unavoidable numerical artifact for finite differ-

ence PB solvers.

4 | SOFTWARE DISSEMINATION

All the algorithms ESES, MIB, TABI, and HOBI as mentioned in this

paper has their corresponding software available for the potential

users. The following provide the software dissemination information.

(1) The ESES source code is available to download from the Github

link: https://github.com/WeilabMSU/ESES, which is currently

maintained by Dr. Wei's group at Michigan State University.

(2) The MIBPB package is maintained by Dr. Geng's group at South-

ern Methodist University accessible from the link https://github.

com/gengwh/rMIB-PB. Note this package was originated at

Dr. Wei's group and collaboratively developed with Dr. Zhao's

group at University of Alabama.

(3) The TABI solver is originated from Dr. Robert Krasny's group at

University of Michigan. It has its C++ version maintained by

Dr. Wilson with Github link https://github.com/Treecodes/TABI-PB

TABLE 4 Reaction field potential for two locations inside a spherical atom located at rA ¼ð1,0,0Þ and rB ¼ð1,1,0Þ by the MIB solver
with κ¼0.

h ϕR
AðrBÞ Error Order ϕR

BðrAÞ Error Order jϕR
AðrBÞ�ϕR

BðrAÞj Order

1 �206.9180 2.07e�1 �207.3678 2.43e�1 4.50e�1

1/2 �207.1797 5.51e�2 1.91 �207.2954 1.71e�1 0.51 1.16e�1 1.96

1/4 �207.0967 2.79e�2 0.98 �207.1909 6.63e�2 1.37 9.42e�2 0.30

1/8 �207.1201 4.48e�3 2.64 �207.1425 1.79e�2 1.89 2.24e�2 2.07

1/16 �207.1229 1.70e�3 1.40 �207.1290 4.40e�3 2.02 6.10e�3 1.88

Notes: The potential ϕR
A is induced by the charge eA ¼1 located at rA and the potential ϕR

B is induced by the charge eB ¼1 located at rB. These reaction field

potentials are compared to the actual Kirkwood potential ¼�207:124201675656 kcal/mol/ec, where ec is the fundamental charge of an electron, to find

the errors and the convergence orders of errors; h represents the grid size.

TABLE 5 The same case as in Table 4 solved by the HOBI solver; N represents the number of triangular elements.

N ϕR
AðrBÞ Error Order ϕR

BðrAÞ Error Order jϕR
AðrBÞ�ϕR

BðrAÞj Order

80 �202.7689 4.36 �205.2846 1.84 2.52

320 �206.3661 7.58e�1 2.52 �207.1341 9.87e�3 7.54 7.68e�1 1.71

1280 �207.0331 9.11e�2 3.06 �207.1869 6.27e�2 �2.67 1.54e�1 2.32

5120 �207.1192 5.02e�3 4.18 �207.1386 1.44e�2 2.12 1.94e�2 2.99

20,480 �207.1263 2.09e�3 1.26 �207.1268 2.62e�3 2.46 5.24e�4 5.21

81,920 �207.1254 1.19e�3 0.81 �207.1246 4.13e�4 2.66 7.79e�4 �0.57

TABLE 6 Reaction field potential for two locations inside a hypothetical molecule with two overlapping spherical atoms by MIB Solver;
RA ¼3:0001 with its center on the x-axis at rA ¼ð�2,0,0Þ and the radius of the sphere B as RB ¼2:0001 with its center the x-axis at rB ¼ð2,0,0Þ.

h ϕR
AðrBÞ Error Order ϕR

BðrAÞ Error Order jϕR
AðrBÞ�ϕR

BðrAÞj Order

1 6.92374 3.40e�1 6.7924 2.10e�1 1.31e�1

0.5 6.66279 7.86e�2 2.11 6.6370 5.48e�2 1.94 2.58e�2 2.35

0.25 6.59671 1.25e�2 2.65 6.5881 5.80e�3 3.24 8.64e�3 1.58

0.125 6.58417 0 6.5823 0 1.89e�3 2.19
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and Fortran version with Github link https://github.com/gengwh/

TABI-PB maintained Dr. Geng's group.

(4) The Fortran version HOBI package is available at https://

sourceforge.net/projects/hobipb/, maintained by Dr. Geng's

group. In addition, a C-version Cartesian FMM-accelerated

Galerkin Boundary Integral (FAGBI) PB solver54 is also available at

https://github.com/gengwh/CFMM-PB maintained by Dr. Geng's

and Dr. Tausch's group at Southern Methodist University, and

Dr. Jiahui Chen's group at University of Arkansas.

5 | CONCLUSIONS

In this paper, we investigate the distinguished features of the ESES

software44 in generating conjugated Eulerian and Lagrangian sur-

faces. We numerically validate the quality of surface discretization

under both frames by using two recently developed PB solvers: a

Cartesian based MIBPB solver and a Lagrangian TABI-PB solver.

The numerical results shows that, thanks to the ESES, the desired

convergence of both solvers using the Eulerian and Lagrangian

representations of the molecular surface generated by ESES. Fur-

thermore, with ESES software and its associated PB solvers, an

interesting and useful but often ignored source-target symmetric

property associated with the linearized PB model is numerically

validated.
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