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Abstract

This paper introduces a series of novel hierarchical implicit derivative matching methods to restore the accuracy of

high-order finite-difference time-domain (FDTD) schemes of computational electromagnetics (CEM) with material

interfaces in one (1D) and two spatial dimensions (2D). By making use of fictitious points, systematic approaches are

proposed to locally enforce the physical jump conditions at material interfaces in a preprocessing stage, to arbitrarily

high orders of accuracy in principle. While often limited by numerical instability, orders up to 16 and 12 are achieved,

respectively, in 1D and 2D. Detailed stability analyses are presented for the present approach to examine the upper limit

in constructing embedded FDTD methods. As natural generalizations of the high-order FDTD schemes, the proposed

derivative matching methods automatically reduce to the standard FDTD schemes when the material interfaces are

absent. An interesting feature of the present approach is that it encompasses a variety of schemes of different orders in a

single code. Another feature of the present approach is that it can be robustly implemented with other high accuracy

time-domain approaches, such as the multiresolution time-domain method and the local spectral time-domain method,

to cope with material interfaces. Numerical experiments on both 1D and 2D problems are carried out to test the

convergence, examine the stability, access the efficiency, and explore the limitation of the proposed methods. It is found

that operating at their best capacity, the proposed high-order schemes could be over 2000 times more efficient than their

fourth-order versions in 2D. In conclusion, the present work indicates that the proposed hierarchical derivative

matching methods might lead to practical high-order schemes for numerical solution of time-domain Maxwell’s

equations with material interfaces.
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1. Introduction

Recently, scientific and technological advancements in nano/micro devices, optical devices, microwave
circuits, antennas, aircraft radar signature, and telecommunication chips, call for innovative computational

methods for solving Maxwell’s equations which govern the propagation and scattering of electromagnetic

waves. The finite-difference time-domain (FDTD) method [1,2] has been a main workhorse of computa-

tional electromagnetics (CEM) in the time domain over the past few decades, due to its simplicity, lack of

dissipative error, and having very low cost per grid node. However, the FDTD method suffers from rel-

atively large dispersive error [3], (first order) staircased representation for complex geometries and

boundaries, and reduction of accuracy to the first order at material interfaces [4]. Consequently, the FDTD

is efficient only for regular geometries of small or moderate size, without dielectric interfaces. For
broadband applications and problems including material interface, wave scattering and penetration over

large and complex domains, the grid size required by using the FDTD method could become prohibitively

expensive for modern computers. Much progress has been made in the past two decades in improving the

FDTD method, including plentiful methods for removing the staircased approximation for boundaries and

geometries [5–9], and numerous high-order FDTD methods [3,10–16]. Here, by high order we refer to

orders being higher than three, which are essential for modern problems of moderately high frequency

(short) waves and/or large domain in nature. However, at present, there is still a pressing need for a

generalized FDTD method which is simple, robust, and high order for large scale computations involving
complex geometries, boundary conditions, and material interfaces. In particular, very few high-order

schemes are available for handling material interfaces.

Apart from the FDTD-based high-order methods, several other time-domain methods that are able to

produce extremely small dispersive errors have also been proposed in the literature. Based on orthonormal

wavelet expansions, a multiresolution time-domain (MRTD) method has been introduced for numerical

analysis of microwave structures [17,18]. By using the perfectly matched layer (PML) [19] technique to

bypass the limitation of the Fourier pseudospectral method on periodic boundary conditions, a Fourier

pseudospectral time-domain (PSTD) method was successfully developed to solve wave propagation and
radiation problems [20,21]. Recently, a wavelet collocation scheme, based on the mathematical framework

of the discrete singular convolution (DSC) algorithm [22] for spatial derivative approximation has been

proposed for scattering and guided wave problems described by Maxwell’s equations on uniform grids [23]

and on staggered grids [24–27]. This wavelet collocation scheme, entitled local spectral time-domain

(LSTD) method, is capable of handling many boundary conditions commonly occurred in CEM. To

achieve a satisfied accuracy, the required grid points per wavelength (PPW) of these three time-domain

methods could be very low. Especially, the PSTD and LSTD can deliver extremely high accuracy by using a

coarse grid of about two PPW, i.e., the Nyquist sampling rate limitation [20,24,25].
In general, the high-order FDTD schemes and the three other high accuracy time-domain methods all

retain much of the simplicity of the original Yee algorithm [1]. Similar to the FDTD method, these time-

domain approaches are also usually applied to a simple Cartesian grid or a single structured grid. However,

it is well known that numerical schemes based on a single structured grid would be restricted to be used only

for geometrically simple domains. Depending on the problems of interest, the FDTD methods can be

directly extended to an orthogonal curvilinear grid by means of a body-conforming domain transformation

to handle wave scattering and propagation in moderately complex geometries. The use of the fundamental

FDTD scheme on nonorthogonal and unstructured grids has been extensively studied [2]. However, these
efforts of constructing FDTD type of approaches based on complex grids might not be as efficient as ex-

pected. To handle truly complex geometries of practical interest, some sort of multidomain grid schemes, or

unstructured grid schemes should be considered. Numerous finite volume time-domain methods [28–30]

and finite element time-domain methods [31–34] have been put forward to systematically handle geomet-

rically complex problems in CEM, since the most flexible grid, the unstructured grid, is best adapted to the
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finite volume and finite-element approaches. Many vector elements, such as Nedelec elements [31], Whitney

forms [35,36], and curl/div conforming vector elements [37] are constructed to provide a discrete analog to

the continuous vector algebra and to enforce only minimal continuity across element boundaries. Recently,
a promising high-order nodal method on fully unstructured grids has been developed by means of a dis-

continuous Galerkin formulation and a penalty method for boundary conditions [38]. As alternatives,

various domain decomposition approaches have been proposed. Since the spectral methods which can

delivery strikingly high accuracy are unfortunately quite inflexible to handle complex geometries, recently,

the development of the domain decomposition pseudospectral or spectral methods has attracted much

attentions [39–44]. A block pseudospectral (BPS) method was successfully developed for one- (1D) and

two-dimensional (2D) electromagnetic problems by using overlapping or composite grids to achieve a

highly accurate coupling of subdomains [39,40]. Remarkably, innovative ways to appropriately enforce the
physical jump conditions at material interfaces are presented by using fictitious points (FPs) [39,40]. Based

on a characteristic formulation of jump conditions, another interesting scheme for modeling material in-

terfaces has been presented in a high-accuracy FDTD approach [44]. Often realized on subdomain grid

systems, this high-accuracy approach numerically yields substantial error reductions to a typical fourth-

order FDTD method [44]. At present, multidomain methods [41–44] are some of the best available

approaches for handling complex geometries in CEM. The offset of a multidomain formulation is the

requirement of correct connections between subdomains, which could be constricting and sometimes may

be difficult to fulfill. Interpolation schemes are usually required. Also, properties such as conservation and
monotonicity may have to be ensured across blocks. Moreover, the use of multidomain framework and

unstructured grids inevitably introduces a need of automated grid generation and a severe restriction on

stability. Even though considerable progress has been made in grid generation, the formation of a good

quality block structured grid system or an unstructured grid system in geometrically complex domain

remains a nontrivial and time-consuming task.

For moderately complex geometries, it is unnecessary to resort to unstructured grids and/or domain

decompositions. Embedding interface FDTD methods [4,45–47] which make use of simple Cartesian

grids, have been introduced to deal with moderately complex geometries. To overcome the staircasing
problems and to impose the physically correct jump conditions, which are often encountered in the

modeling of complex geometries, appropriate local modifications of the differentiation scheme close to

boundaries and interfaces in a preprocessing stage are essential. While maintaining the simplicity and

computational efficiency of the Yee scheme [1,2], these modified FDTD methods fully restore second-

order accuracy, even in case of curved boundaries and interfaces, by using a simple Cartesian grid

[4,45,46]. However, the extension of these embedding FDTD methods to higher-order accuracy remains

a challenge [4].

Recently, some important contributions to the field have been made by Yefet and Turkel [48], Yefet and
Petropoulos [49], Xie et al. [50,51], and Hesthaven [4] who generalize the embedding schemes to fully

fourth-order FDTD methods on a simple structured grid with material interfaces. It is well known that the

suitable and high-order interface schemes are crucial to high-order time-domain methods [4]. The devel-

opment of such interface schemes can be considerably more complex than the derivation of high-order

differential stencils. Therefore, the significant accomplishment of these fourth-order schemes [48–51] is that

the physical jump conditions at material interfaces are correctly enforced up to high-order, so that fourth-

order convergence is uniformly assured over the entire domain. Subtle interfaces techniques with one-sided

difference approximations and extrapolations are employed in these methods. Similar to the embedding
methods [4,45,46], the modeling of interfaces results in a local modification of the differential scheme in a

preprocessing stage [4,48–51].

The studies of fourth-order embedding FDTD schemes [4,48–51] open up the opportunity for devel-

oping other more general and robust high-order interface schemes. There are still many important ques-

tions remaining unanswered. One interesting instance as noted in [4] is that whether it is possible to extend
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the interface schemes [4,48–51] beyond the fourth-order accuracy, which is of greatly significance for large

domain and high frequency wave computations. Since the local modifications of the differential schemes in

[4,48–51] are explicitly implemented, the generalization to higher-order along this line may be theoretically
admissible, however, would be quite empirical as well as mathematically complicated [4].

It is therefore of great interest to develop a systematic approach to correctly enforce the physical jump

conditions at material interfaces to a variety of orders. To this end, we present herein a series of novel

hierarchical implicit derivative matching methods for interface modeling, which can greatly exceed fourth-

order accuracy. Our schemes make use of FPs, a technique extensively used in our previous work [22–26,52–

55] to locally modify the differential stencils near the interfaces, which is an idea first proposed by Driscoll

and Fornberg [39,40] in their BPS methods. However, only one single structured grid is assumed in the

present work, similar to other high-order embedding FDTD methods [4,48–51]. Moreover, local modifi-
cations of the differential stencils at beginning, the so-called preprocessing stage, rather than subdomain

coupling at each time step, are carried out in the present study. The stability issue of the proposed methods is

examined. To enhance the stability and robustness of interface schemes, a novel hierarchical derivative

matching method is proposed. Extensive numerical studies in both 1D and 2D are considered. We note that

in 2D, our best high-order schemes can be over 2000 times more efficient than our fourth-order schemes.

The rest of this paper is organized as follows. Section 2 is devoted to a brief description of Max-

well’s equations. Model equations in both 1D and 2D are considered. Commonly used boundary

conditions in CEM are briefly introduced. Various issues associated with 1D modeling are dealt with in
Section 3. The formalism of derivative matching (DM) is discussed in detail. Two new schemes, an

implicit derivative matching method (IDM) and a hierarchical derivative matching method (HDM), are

proposed. Comprehensive stability analysis is conducted. Numerical tests are carried out to validate the

proposed methods. Section 4 presents the generalization of the proposed derivative matching methods

to 2D electromagnetic problems. The difficulties of derivative matching approach in 2D are discussed.

Two new schemes, a quasi-fourth-order 2D scheme and a 2D hierarchical derivative matching method

are constructed. Stability issues and numerical tests in 2D schemes are examined. Finally, conclusions

are presented in Section 5.
2. Governing equations

By assuming the absence of charge density and current source, the time-dependent Maxwell’s equations

for electromagnetic fields in free space read

oB

ot
þr� E ¼ 0; r � B ¼ 0;
oD

ot
�r�H ¼ 0; r �D ¼ 0; ð1Þ

where D and B are, respectively, the electric and magnetic flux densities, while E andH are, respectively, the
electric and magnetic field intensities. In addition, the following linear isotropic constitutive relations are

satisfied:

D ¼ �E; B ¼ lH;

where the electric permittivity � and the magnetic permeability l of material are piecewise constants. A

nondimensional form of the equations is considered, i.e., � ¼ l ¼ 1 in free space.
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Both 1D and 2D electromagnetic problems are considered in the present study. In 2D, Maxwell’s

equations can be decomposed into two independent sets of equations, the transverse magnetic (TM) modes

and the transverse electric (TE) modes. In this paper, we concern ourselves with the TM case for 2D studies

l
oHx

ot
¼ � oEz

oy
; l

oHy

ot
¼ oEz

ox
; �

oEz

ot
¼ oHy

ox

�
� oHx

oy

�
: ð2Þ

The TM system (2) can be further simplified to 1D, resulting in an x-directed, z-polarized transverse
electromagnetic (TEM) mode

�
oEz

ot
¼ oHy

ox
; l

oHy

ot
¼ oEz

ox
: ð3Þ

As simple instances of Maxwell’s equations, the TM mode (2) and TEM mode (3) still preserve the

essential features of Maxwell’s equations, e.g., the two-way wave propagation and the loss of smoothness

across material interfaces. Thus, these two equations are ideally suitable for benchmarking novel numerical
approaches. Meanwhile, we note that the numerical modeling of the TE polarization might be more

complex than that of the TM polarization, especially when surface waves at interfaces are studied.

In order to obtain a complete description of an electromagnetic problem, besides the various forms of

Maxwell’s equations, we also need certain boundary conditions, which relate field components on either

side of a boundary or interface. At an interface between two media, say medium 1 and medium 2, the

boundary conditions can be expressed mathematically as:

n̂� ðE1 � E2Þ ¼ 0; n̂ � ðD1 �D2Þ ¼ 0; ð4Þ
n̂� ðH1 �H2Þ ¼ 0; n̂ � ðB1 � B2Þ ¼ 0 ð5Þ

for electric fields and magnetic fields, respectively. Here n̂ is the unit vector normal to the interface, pointing
from medium 2 into medium 1. A special case with one of the media, say medium 2, being a perfect electric

conductor (PEC), is practically important. Since a perfect conductor cannot sustain a field inside, PEC

boundary conditions now reduce to
n̂� E ¼ 0; n̂ � B ¼ 0: ð6Þ
Another important type of boundary conditions for numerical simulation of Maxwell’s equations is the

absorbing boundary condition. Such conditions must be specified in practical computations at the outer

boundary in order to obtain a unique solution for open or unbounded electromagnetic problems. Since the

high-order time-domain methods considered in this paper are basically the extensions of the Yee algorithm,

the widely used absorbing conditions, such as far-field radiation condition [56], PML boundary condition

[19], and Lorentz material model absorber layers [57,58], could be used in these extended schemes for the

simulation of radiation out of a domain, if required.
3. One-dimensional studies

We first consider in this section the method of implicit derivative matching in 1D cases. Some stability

issues are considered. A novel hierarchical implicit derivative matching is discussed in detail. Several nu-

merical experiments of time-domain electromagnetic problems are carried out.
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3.1. Method of derivative matching with fictitious points

For convenience, we consider the vector form of the 1D Maxwell’s equation (3) in present study,

oq

ot
¼ A

oq

ox
; q ¼ Ez

Hy

� �
; A ¼ 0 1=�

1=l 0

� �
: ð7Þ

We suppose the domain under study consisting of two dielectric media, with the interface at x ¼ n.
Consequently, the coefficient matrix A attains different values in media 1 and 2, i.e., A ¼ A1 if x < n or

A ¼ A2 if x > n. For simplicity, we denote one-sided derivatives at the interface by

qðpÞðn�; tÞ ¼ opqðx; tÞ
oxp

����
x!n�

; qðpÞðnþ; tÞ ¼ opqðx; tÞ
oxp

����
x!nþ

:

It can be derived from interface conditions (4) and (5) that the electromagnetic fields q are continuous

across the material interface, i.e.,

qð0Þðn�; tÞ ¼ qð0Þðnþ; tÞ: ð8Þ

This condition is referred to as (zeroth-order) physical jump condition. Since the fields are continuous, their

time derivatives are also continuous. Thus, by using the Maxwell’s equation (7), we also have that

A1q
ð1Þðn�; tÞ ¼ A2q

ð1Þðnþ; tÞ: ð9Þ

In principle, one can repeat this as often as needed to generate jump conditions of any order

Ap
1q

ðpÞðn�; tÞ ¼ Ap
2q

ðpÞðnþ; tÞ; p ¼ 0; 1; 2; . . . : ð10Þ

These jump conditions are physically exact and relate the electromagnetic fields and their derivatives as

taken from the two sides of the interface.

Driscoll and Fornberg [39,40] developed their BPS method by matching the interface with the derivative

condition (10) and fictitious grid values. This novel technique for coupling subdomains is referred to as the

method of derivative matching (DM) [39,40]. The use of FPs significantly enhances the flexibility of the DM

modeling. Similar fictitious domain approaches have also been studied in different occasions [59,60,52,53].

In the present study, it is of great interest to generalize the idea of the DM to single structured grid and to

the framework of FDTD methods. In fact, it is clear that the DM modeling near interfaces is much in the
spirit of those in the embedding FDTD methods and their extensions [4,45–46,48–51]. The embedding

FDTD schemes are usually constructed based on the zeroth-order jump conditions, while the BPS method

repeatedly utilizes these conditions. The distinct difference between the BPS method [39,40] and the em-

bedding FDTD schemes [4,45–46,48–51] is that jump conditions are enforced via solving fictitious values at

each time step in the former, while in the latter, this is achieved by locally altering the finite-difference (FD)

weights in a preprocessing stage. It is noted that it might be more efficient if the DM of the BPS method

could be carried out once for all at the beginning of the computation. Meanwhile, this is computationally

admissible, since the algebraic systems at different time steps attain the identical organization, albeit have
different values.

In order to study such an implicit DM modeling, we first establish some notations. Referring to Fig. 1,

we denote function values under consideration (either Ez or Hy) at original and fictitious points as gi and fi
(for i ¼ 1; 2; . . . ; 2m), respectively. The FP fi is located at the same position as gi. The total number of FPs is

2m. For simplicity, a uniform grid is assumed in the present study. It is noted that interface x ¼ n may not

need to be laid on the grid in the present modeling. In the BPS method [39,40], the values of fi are solved
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Fig. 1. Illustration of FPs and notation used in the proposed IDM method.
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based on the values of gi at each time step. However, in the present paper, a preprocessing scheme is sought.
To this end, we assume the following representation:

fi ¼
X2m
j¼1

ri;jgj for i ¼ 1; 2; . . . ; 2m; ð11Þ

where ri;j are representation coefficients. With this representation, it is not necessary to solve fi at each time
step. One needs only to determine ri;j, i; j ¼ 1; 2; . . . ; 2m, once.

We consider the matrix form of representation (11)

F ¼ RG;

where F ¼ ðf1; f2; . . . ; f2mÞT, G ¼ ðg1; g2; . . . ; g2mÞT, and R ¼ ðri;jÞ2mi;j¼1. We shall determine the unknown

coefficient matrix R. For convenience, we consider the rows of R as new variables, Rj ¼ ðrj;1; rj;2; . . . ; rj;2mÞ
for j ¼ 1; 2; . . . ; 2m. To determine the coefficients/elements of R, it is equivalent to solve a vector R̂ from an

algebraic system, where R̂ ¼ ðR1;R2; . . . . . . ;R2mÞT ¼ ðr1;1; r1;2; . . . ; r1;2m; r2;1; r2;2; . . . ; r2;2m; . . . ; r2m;1; r2m;2; . . . ;
r2m;2mÞT. It is noted that the dimension of the matrix system for determining R̂ is 4m2 � 4m2. Similarly, we
define 2m vectors Ij as the rows of a 2m� 2m identity matrix I , i.e., I1 ¼ ð1; 0; 0; . . . ; 0Þ; I2 ¼
ð0; 1; 0; . . . ; 0Þ; . . . ; I2m ¼ ð0; 0; 0; . . . ; 0; 1Þ. Symbolically, we have

fj ¼ RjG and gj ¼ IjG: ð12Þ

Similar to the BPS method [39,40], up to ð2m� 1Þth-order physical jump conditions are employed for

determining the representation weights of 2m FPs. Standard central FD approximations are utilized to

discretize these 2m jump conditions. Throughout the study, the FD weights are calculated via a fast al-

gorithm introduced in [61]. The discretized equations are evaluated at each grid point to form 2m� 2m
algebraic equations. To illustrate the idea, we consider one particular jump condition as an example

1

�1
Eð2Þ
z ðn�; tÞ ¼ 1

�2
Eð2Þ
z ðnþ; tÞ: ð13Þ

We consider the following FD approximation of Eq. (13):

1

�1

Xm
i¼1

w2;igi

"
þ
X2m
i¼mþ1

w2;ifi

#
¼ 1

�2

Xm
i¼1

w2;ifi

"
þ
X2m
i¼mþ1

w2;igi

#
; ð14Þ

where w2;i, i ¼ 1; 2; . . . ; 2m, are the FD weights for the second-order derivative approximation. It is obvious

from Eq. (14) that although a simple computational domain is assumed, the domain decomposition point

of view is adopted in the present study. The approximation style of Eq. (14) is very close to that used in the

BPS method.
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To form the desired algebraic equations, we rewrite Eq. (14) as

1

�1

X2m
i¼mþ1

w2;ifi �
1

�2

Xm
i¼1

w2;ifi ¼
1

�2

X2m
i¼mþ1

w2;igi �
1

�1

Xm
i¼1

w2;igi: ð15Þ

The right-hand side of Eq. (15) are known values. We then substitute two relations in Eq. (12) into Eq. (15),

to obtain

1

�1

X2m
i¼mþ1

w2;iRiG� 1

�2

Xm
i¼1

w2;iRiG ¼ 1

�2

X2m
i¼mþ1

w2;iIiG� 1

�1

Xm
i¼1

w2;iIiG: ð16Þ

By eliminating the common abstract variable G, we finally obtain 2m algebraic equations from the jump

condition (13)

1

�1

X2m
i¼mþ1

w2;iRT
i �

1

�2

Xm
i¼1

w2;iRT
i ¼ 1

�2

X2m
i¼mþ1

w2;iITi � 1

�1

Xm
i¼1

w2;iITi : ð17Þ

These equations are independent of field values. Algebraic equations for other jump conditions can be

similarly derived.

Unlike the BPS method [39,40], the function values on FPs, i.e., ffig2mi¼1, are never evaluated in the

present study. In contrary, by means of representation coefficients ri;j, we locally modify the differential

stencil near the material interface at the beginning of the computation, as in the embedding FDTD

schemes [4,45,46,48–51]. Thus, the present numerical modeling can be regarded as an implicit version

of DM. One possible advantage of the implicit derivative matching (IDM) is that it might be more
efficient for numerical simulation of long time wave propagation. It is noted that although the IDM is

formulated on a uniform grid, it actually works on more general grid settings. For example, either

staggered or nonstaggered grid systems can be employed together with a time-domain solver. As well,

the IDM can be easily adopted in a block structured grid like the original DM method [39]. More-

over, a nonuniform grid could be applied near the interface to enhance adaptivity with appropriate

Lagrange coefficients of differentiation. In fact, the IDM can even be extended to based on

unstructured grids. Furthermore, this kind of representation could also be utilized in an implicit time-

stepping scheme or a resolution of boundary value problems or eigenvalue problems, due to its
implicit nature.

The major difference between the proposed scheme and the embedding FDTD schemes [4,45,46,48–

51] is that the present local modification of differential stencil is modeled in a systematic way, such that

it can be made up to arbitrarily high-order in principle, while the previous schemes were manually

constructed one by one. Thus, the IDM yields an excellent way to generalize the embedding FDTD

scheme to high orders. Furthermore, it could be applied together with various different high-order time-

domain methods, such as high-order FDTD methods [3,10–16], the MRTD method [17,18], and the

LSTD method [24–26]. In these applications, the number of FPs (m) could be simply specified ac-
cording to the length of stencil involved in these time-domain methods, and significant improvement of

accuracy is expected. It is noted that, however, the IDM cannot be directly incorporated into a global

formulation, e.g., the PSTD method [20,21], especially when at least two interfaces are present. One

possible drawback of the proposed scheme is that the size of algebraic system to be solved for the

interface is much larger than that in the BPS method [39]. This might imply a substantial memory

requirement and requires longer CPU time in computation.
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3.2. Numerical tests of the IDM method

We consider two model problems in this subsection to investigate the numerical performance of the IDM
method. Both problems under consideration are for TEM waves, governed by the 1D Maxwell’s equation

(7), but with possibly different jump conditions. These two model problems have the same electromagnetic

structure as following. The electromagnetic fields are defined on a standard interval x 2 ½�1; 1�, with PEC

walls located at both ends. The interior of the resonator is assumed to be nonmagnetic with l ¼ 1 and filled

with two dielectric media with �1 and �2. The material interface is at n ¼ 0.

In the present study, a uniform staggered grid system is used for Ez and Hy , with either an E node or an H
node on the boundaries x ¼ �1. The standard high-order central FDTD approximations are employed for

the spatial discretization

Eð1Þ
z ðxiþ1=2; tÞ �

1

Dx

X�1

j¼�M

wjEzðxiþ1þj; tÞ þ
1

Dx

XM
j¼1

wjEzðxiþj; tÞ; ð18Þ
H ð1Þ
y ðxi; tÞ �

1

Dx

X�1

j¼�M

wjHyðxiþ1=2þj; tÞ þ
1

Dx

XM
j¼1

wjHyðxi�1=2þj; tÞ; ð19Þ

whereDx is the grid spacing andM is the half computational bandwidth. Herewj, for j ¼ �1; . . . ;�M , are the

normalized FD weights. For example, when M ¼ 1, we simply have w�1 ¼ �1 and w1 ¼ 1 as in the Yee al-

gorithm [1,2]. WhenM ¼ 2, the weights for the fourth-order accurate stencil are given as ðw�2;w�1;w1;w2Þ ¼
1
24
ð1;�27; 27;�1Þ [2,4,49–51]. The weights for higher-order stencils can be computed as discussed in [61].

Throughout the study, we always maintain the translation invariance property of the differential stencil,

i.e., only one basic approximation kernel (wj) is required for the entire computational domain ½�1; 1�.
Obviously, this property has distinct computational efficiency. To keep this property near boundary and/or

interface, it is clearly necessary to create a fictitious domain outside the boundary or interface and cor-

respondingly generate fictitious values. At material interface, this is equivalent to carry out the IDM with

m ¼ M to locally modify the basic differential stencil. An LU decomposition is utilized to solve the algebraic

system of the IDM modeling. At the PEC walls, it can be derived from Eq. (6) that the fields satisfy extra
conditions at two ends [39,45]

opEz

oxp
jx¼�1 ¼ 0; p ¼ 0; 2; 4; . . . ; ð20Þ
opHy

oxp
jx¼�1 ¼ 0; p ¼ 1; 3; 5; . . . ð21Þ

Since we have a grid node on the boundary, following the BPS method [39], the symmetric or anti-sym-

metric properties of electric and magnetic fields are directly exploited in numerical boundary modeling. This

results in the so-called anti-symmetric and symmetric boundary extensions, respectively, for Ez and Hy [24–

26]. The similar boundary modeling is referred to as the image principle in the MRTD method [17,18]. In
case that there is no grid point on the boundary as considered in [45], an IDM for imposing boundary

conditions can be similarly formulated, as suggested in [39].

After completing the spatial discretization, the resulting semidiscrete form of Maxwell’s equation (7) at

time t ¼ tn can be expressed as

oQn

ot
¼ 1

Dx
SQn; ð22Þ
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whereQn ¼ ðEzðx1; tnÞ; . . . ;EzðxN ; tnÞ;Hyðx1=2þ1; tnÞ; . . . ;Hyðx1=2þN ; tnÞÞT with N being the total number of grid

points for either Ez or Hy . Here, the matrix S represents the complete spatial approximation to the right-

hand side of Eq. (7). In the present study, the classical fourth-order Runge–Kutta (RK4) method is em-
ployed for the temporal integration, i.e.,

Qnþ1 ¼ Qn þ 1
6
ðK1 þ 2K2 þ 2K3 þ K4Þ;
K1 ¼
Dt
Dx

SQn; K2 ¼
Dt
Dx

SðQn þ 1
2
K1Þ; ð23Þ
K3 ¼
Dt
Dx

SðQn þ 1
2
K2Þ; K4 ¼

Dt
Dx

SðQn þ K3Þ:

Throughout the paper, the time step Dt is chosen to be sufficiently small so that the error of time dis-

cretization is negligible comparing to that of spatial discretization.
We first consider a 1D model problem with the usual jump conditions discussed above. The exact so-

lution of this model problem can be given as [45]

Ez ¼
a1 expði

ffiffiffiffi
�1

p
xxÞ � b1 expð�i

ffiffiffiffi
�1

p
xxÞ

� �
expðixtÞ; �16 x6 0;

a2 expði
ffiffiffiffi
�2

p
xxÞ � b2 expð�i

ffiffiffiffi
�2

p
xxÞ

� �
expðixtÞ; 06 x6 1;

(
ð24Þ
Hy ¼
ffiffiffiffi
�1

p
a1 expði

ffiffiffiffi
�1

p
xxÞ þ b1 expð�i

ffiffiffiffi
�1

p
xxÞ

� �
expðixtÞ; �16 x6 0;ffiffiffiffi

�2
p

a2 expði
ffiffiffiffi
�2

p
xxÞ þ b2 expð�i

ffiffiffiffi
�2

p
xxÞ

� �
expðixtÞ; 06 x6 1;

(
ð25Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and a1 ¼ ð ffiffiffiffi

�2
p

cosð ffiffiffiffi
�2

p
xÞÞ=ð ffiffiffiffi

�1
p

cosð ffiffiffiffi
�1

p
xÞÞ, a2 ¼ expð�ixð ffiffiffiffi

�1
p þ ffiffiffiffi

�2
p ÞÞ, b1 ¼ a1 exp

ð�i2
ffiffiffiffi
�1

p
xÞ, and b2 ¼ a2 expði2

ffiffiffiffi
�2

p
xÞ. For homogeneous medium with � ¼ �1 ¼ �2, the wavenumber x

simply takes the value of x ¼ 2p=
ffiffi
�

p
, while when the waveguide is filled with two different media, the value

of x is obtained as the solution to equation

� ffiffiffiffi
�2

p
tanð ffiffiffiffi

�1
p

xÞ ¼ ffiffiffiffi
�1

p
tanð ffiffiffiffi

�2
p

xÞ:

An example plot of fields in Eqs. (24) and (25) at t ¼ 0 with �1 ¼ 1, �2 ¼ 2:25, and x � 5:07218116182516 is

given in Fig. 2. It is noted that the exact solution loses its regularity at the material interface, although it is
continuous.

The numerical results of this 1D problem with x � 5:07218116182516 by using the high-order FDTD

approximation with the IDM scheme for several different M values are listed in Table 1. For a comparison,

results obtained by solely employing the standard FDTD method are also given in Table 1. It is clear from

the table that the standard FDTD results are all essentially first-order accurate, no matter how large M is.

In other words, the full accuracy of high-order FDTD approximations is deteriorated due to the discon-

tinuous nature of the media. However, it is obvious from Table 1 that after the IDM is applied, the full

accuracy of the FDTD approximations is recovered. The numerical results clearly display the theoretical
rate of convergence, i.e., ð2MÞth-order for the FDTD scheme with a given M , except when the precision

limit is reached, see also Fig. 3. Consequently, extremely high accuracy can be achieved in our numerical

simulations for this 1D electromagnetic problem with inhomogeneous media. Finally, by using M ¼ 8, we

have already attained the highest possible accuracy on the coarsest grid with N ¼ 50, so that the numerical

result of M ¼ 8 seems not converging any further when the grid is refined in Fig. 3. In fact, the spatial

discretization error herein should be restricted by either the temporal discretization error or the machine

limit.



Table 1

The L2 errors in Ez and Hy at t ¼ p by using N grid points for each field intensity for the 1D model problem with x � 5:07218116182516

M N FDTD FDTD with IDM (m ¼ M)

Ez Hy Ez Hy

Error Rate Error Rate Error Rate Error Rate

1 50 1:56ð�1Þ 1:99ð�1Þ 7:85ð�2Þ 9:81ð�2Þ
100 5:98ð�2Þ 1.379 7:63ð�2Þ 1.386 1:94ð�2Þ 2.014 2:41ð�2Þ 2.025

200 2:56ð�2Þ 1.226 3:26ð�2Þ 1.226 4:83ð�3Þ 2.008 5:97ð�3Þ 2.013

2 50 8:45ð�2Þ 1:10ð�1Þ 7:90ð�4Þ 9:74ð�4Þ
100 4:23ð�2Þ 0.998 5:45ð�2Þ 1.011 4:83ð�5Þ 4.032 5:92ð�5Þ 4.040

200 2:12ð�2Þ 0.999 2:72ð�2Þ 1.004 2:98ð�6Þ 4.018 3:65ð�6Þ 4.022

3 50 8:39ð�2Þ 1:09ð�1Þ 1:08ð�5Þ 1:33ð�5Þ
100 4:22ð�2Þ 0.992 5:44ð�2Þ 1.004 1:64ð�7Þ 6.045 2:00ð�7Þ 6.052

200 2:11ð�2Þ 0.996 2:72ð�2Þ 1.001 2:52ð�9Þ 6.023 3:06ð�9Þ 6.027

4 50 8:40ð�2Þ 1:09ð�1Þ 1:70ð�7Þ 2:09ð�7Þ
100 4:22ð�2Þ 0.993 5:44ð�2Þ 1.005 6:45ð�10Þ 8.044 7:86ð�10Þ 8.051

200 2:11ð�2Þ 0.995 2:72ð�2Þ 1.000 6:72ð�12Þ 6.585 8:36ð�12Þ 6.555

8 50 8:39ð�2Þ 1:09ð�1Þ 4:34ð�12Þ 5:52ð�12Þ
100 4:22ð�2Þ 0.993 5:44ð�2Þ 1.003 4:36ð�12Þ �0:005 5:50ð�12Þ 0.004

200 2:11ð�2Þ 0.996 2:72ð�2Þ 1.001 4:32ð�12Þ 0.012 5:44ð�12Þ 0.018

The number of FPs in the IDM is always set to m ¼ M , and sufficiently small time increment is used in all cases (Dt ¼ p� 10�4).

Here 1:56ð�1Þ denotes 1.56� 10�1.
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Fig. 2. Solution of the 1D model problem at t ¼ 0 with x � 5:07218116182516. (a) Real part; (b) imaginary part.
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In order to examine the full order of accuracy for M ¼ 8, we consider the same problem with a large

x � 36:48810769772309. The numerical results are given in Table 2. It is obvious that for this highly under-

sampling case, all schemes produce large errors due to the numerical dispersion. When the grid resolution is

refined, the designed theoretical order of convergence of each scheme can be reached. In particular, we

achieve 16th order of accuracy by using M ¼ 8 for this high-frequency problem with inhomogeneous

media.

It is interesting to compare the performance of present method at different orders, which are obtained by
simply changing the parameter m (and M) in the present approach. As shown in Table 1, with about 3.6



Table 2

The L2 errors in Ez and Hy at t ¼ p=2 for the 1D model problem with high frequency parameter setting (x � 36:48810769772309)

M N Ez Hy

Error Rate Error Rate

1 50 2.00(+0) 2.55(+0)

100 2.51(+0) �0:327 3.32(+0) �0:381

200 8:26ð�1Þ 1.605 1.09(+0) 1.600

2 50 2.27(+0) 2.81(+0)

100 4:01ð�1Þ 2.499 5:40ð�1Þ 2.376

200 2:61ð�2Þ 3.939 3:50ð�2Þ 3.949

3 50 2.27(+0) 3.08(+0)

100 6:56ð�2Þ 5.116 8:87ð�2Þ 5.121

200 1:12ð�3Þ 5.872 1:51ð�3Þ 5.879

4 50 1.57(+0) 2.15(+0)

100 1:23ð�2Þ 6.999 1:66ð�2Þ 7.015

200 5:56ð�5Þ 7.787 7:49ð�5Þ 7.794

8 50 3:07ð�1Þ 4:22ð�1Þ
100 2:64ð�5Þ 13.505 3:59ð�5Þ 13.522

200 6:06ð�10Þ 15.412 8:19ð�10Þ 15.419

The FDTD method with the IDM modeling (m ¼ M) is used, and Dt ¼ p=5� 10�4.
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Fig. 3. Log–log plots of the L2 errors by using different M values for the 1D model problem. Numerical results of the high-order

FDTD with or without the IDM are shown. (a) Errors in Ez; (b) errors in Hy .
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times more CPU time, our 16th order scheme can be over 107 times more accurate than our 4th order

scheme, on the grid of N ¼ 50. For 1D computation, when mesh size is double for the fourth-order scheme,

its accuracy is 16 times better, while its CPU time is two times larger. Consequently, our 16th order scheme

could be about 32 times more efficient than the fourth-order one under this circumstance. The similar

pattern could also be observed in the high-frequency setting when N ¼ 200 (Table 2). It is also important to
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note that how sensitive a computational scheme is to the change in frequency parameter. Had the frequency

parameter x been set at a 20 times higher in Table 2, it could have been only the highest order scheme that

delivers anything meaningful at the present grid spacing. These findings reveal the benefit of using a higher-
order scheme whenever it is possible.

We then consider a quasi-1D model problem studied in [45] with �1 ¼ 1 and �2 ¼ 2:25. This quasi-1D
problem is degenerated from a 2D problem in which the material interface is at some angle with respect to

the Cartesian grid. The important feature of this quasi-1D problem is that the individual electromagnetic

field component may become discontinuous at the material interface [45]. Such a phenomenon usually

appears only in higher dimensional cases. Following [45], we denote h as the angle between the unit vector

normal to the interface, n̂, and the x-axis. Now, the Ez field is discontinuous across the interface, satisfying

the relation [45]

Eð0Þ
z ðn�; tÞ ¼ �2

1þ ð�2 � 1Þ cos2 hE
ð0Þ
z ðnþ; tÞ: ð26Þ

In other words, the zeroth-order jump condition for the quasi-1D model problem changes to Eq. (26).

Consequently, the general pth-order jump condition becomes

Ap
1q

ðpÞðn�; tÞ ¼ A0Ap
2q

ðpÞðnþ; tÞ; A0 ¼ �2 1þ ð�2 � 1Þ cos2 hð= Þ 0

0 1

� �

for p ¼ 0; 1; 2; . . . The exact solution of this model problem is also given by Eqs. (24) and (25) [45]. While x
is found as the solution to equation

tanðxÞ ¼ � ffiffiffiffi
�2

p
tanð ffiffiffiffi

�2
p

xÞ
1þ ð�2 � 1Þ cos2 h :

An example plot of the solution at t ¼ 0 with x � 5:05589071456588 is shown in Fig. 4. A small jump in the

field Ez is clearly displayed in the figure, as suggested in Eq. (26). It is well known that the approximation of

discontinuous variables is numerically challenging. For this difficulty problem, it has been found in [45] that

the Yee scheme exhibits local divergence and losses of global convergence, due to its incapability of cor-

rectly modeling the discontinuous field components.
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Fig. 4. Solution of the quasi-1D model problem at t ¼ 0. (a) Real part; (b) imaginary part.
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The numerical results of the quasi-1D model problem with x � 5:05589071456588 are listed in Table 3.

It can be observed from Table 3 that the standard FDTD approximation for this problem is globally

nonconvergent, no matter how large M is (see also Fig. 5). The loss of global convergence is due to the lack
of properly enforced jump conditions on the field components [45]. On the other hand, it can be seen clearly
Table 3

The L2 errors in Ez and Hy at t ¼ p for the quasi-1D model problem with x � 5:05589071456588 by using Dt ¼ p� 10�4

M N FDTD FDTD with IDM (m ¼ M)

Ez Hy Ez Hy

Error Rate Error Rate Error Rate Error Rate

1 50 2:32ð�1Þ 2:67ð�1Þ 8:23ð�2Þ 9:97ð�2Þ
100 1:99ð�1Þ 0.220 2:29ð�1Þ 0.222 2:04ð�2Þ 2.013 2:45ð�2Þ 2.024

200 1:98ð�1Þ 0.010 2:31ð�1Þ �0:014 5:07ð�3Þ 2.007 6:08ð�3Þ 2.012

2 50 2:04ð�1Þ 2:36ð�1Þ 8:15ð�4Þ 9:74ð�4Þ
100 1:97ð�1Þ 0.048 2:30ð�1Þ 0.038 4:99ð�5Þ 4.030 5:93ð�5Þ 4.038

200 1:99ð�1Þ �0:013 2:32ð�1Þ �0:015 3:08ð�6Þ 4.017 3:65ð�6Þ 4.021

3 50 2:03ð�1Þ 2:36ð�1Þ 1:10ð�5Þ 1:31ð�5Þ
100 1:97ð�1Þ 0.040 2:30ð�1Þ 0.038 1:67ð�7Þ 6.043 1:98ð�7Þ 6.050

200 1:99ð�1Þ �0:011 2:32ð�1Þ �0:015 2:58ð�9Þ 6.022 3:04ð�9Þ 6.026

4 50 2:03ð�1Þ 2:36ð�1Þ 1:73ð�7Þ 2:05ð�7Þ
100 1:98ð�1Þ 0.036 2:30ð�1Þ 0.038 6:55ð�10Þ 8.041 7:73ð�10Þ 8.048

200 1:99ð�1Þ �0:010 2:32ð�1Þ �0:015 7:07ð�12Þ 6.535 8:52ð�12Þ 6.504

8 50 2:03ð�1Þ 2:36ð�1Þ 4:65ð�12Þ 5:73ð�12Þ
100 1:98ð�1Þ 0.036 2:30ð�1Þ 0.038 4:67ð�12Þ �0:006 5:72ð�12Þ 0.003

200 1:99ð�1Þ �0:010 2:32ð�1Þ �0:015 4:63ð�12Þ 0.013 5:65ð�12Þ 0.017
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Fig. 5. Log–log plots of the L2 errors by using different M values for the quasi-1D model problem. Numerical results of the high-order

FDTD with or without the IDM are shown. (a) Errors in Ez; (b) errors in Hy .
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from Table 3 and Fig. 5 that the numerical results of the FDTD approach with the IDM for the quasi-1D

problem are as good as those for the 1D model problem given in Table 1 and Fig. 3. Both expected

convergence rates and extremely high accuracy are restored after using the IDM method to correctly model
the discontinuous jump conditions.

Since, in Table 3, the numerical accuracy of M ¼ 8 is also limited by the machine precision, we similarly

consider a high-frequency wave study for the present quasi-1D model problem. By setting

x � 36:47181725046381, the numerical results are listed in Table 4. Similar findings as in Table 2 are

obtained. Moreover, a comparison between different orders in this case indicates the same pattern: the 16th

order scheme can be over 107 times more accurate and about 35 times more efficient than the fourth-order

scheme.

Although the IDM scheme performs very well together with the FDTD methods for small M , it is
found in our numerical experiments that the IDM scheme suffers from certain problems when M be-

comes larger, see Table 5. Quite large m ¼ M values are considered in Table 5 for the FDTD schemes
Table 4

The L2 errors in Ez and Hy at t ¼ p for the quasi-1D model problem with high frequency parameter setting (x � 36:47181725046381)

M N Ez Hy

Error Rate Error Rate

1 50 2.12(+0) 2.65(+0)

100 2.66(+0) �0:325 3.42(+0) �0:369

200 8:63ð�1Þ 1.619 1.12(+0) 1.612

2 50 2.46(+0) 2.98(+0)

100 4:13ð�1Þ 2.572 5:47ð�1Þ 2.446

200 2:70ð�2Þ 3.939 3:54ð�2Þ 3.949

3 50 2.35(+0) 3:13Eðþ0Þ
100 6:72ð�2Þ 5.130 8:93ð�2Þ 5.133

200 1:15ð�3Þ 5.871 1:52ð�3Þ 5.879

4 50 1.61(+0) 2.17(+0)

100 1:25ð�2Þ 7.004 1:67ð�2Þ 7.020

200 5:68ð�5Þ 7.787 7:53ð�5Þ 7.794

8 50 3:12ð�1Þ 4:22ð�1Þ
100 2:68ð�5Þ 13.505 3:59ð�5Þ 13.522

200 6:16ð�10Þ 15.411 8:19ð�10Þ 15.419

The FDTD method with the IDM modeling (m ¼ M) is used, and Dt ¼ p=5� 10�4.

Table 5

The L2 errors at t ¼ p for two model problems when the number of FPs m is large

Problem M IDM HDM

Ez Hy CPU l Ez Hy CPU

1D 16 4:24ð�12Þ 5:35ð�12Þ 0.0240 8 3:93ð�12Þ 4:91ð�12Þ 0.0029

32 2:16ð�5Þ 2:77ð�5Þ 2.8867 8 7:12ð�11Þ 7:85ð�11Þ 0.0166

Quasi-1D 16 4:61ð�12Þ 5:65ð�12Þ 0.0245 8 5:37ð�12Þ 6:59ð�12Þ 0.0028

32 4:72ð�6Þ 6:52ð�6Þ 2.9822 8 3:45ð�12Þ 3:52ð�12Þ 0.0167

Here, x � 5:07218116182516 and x � 5:05589071456588 for the 1D and quasi-1D model problem, respectively. The FDTD

methods are employed in both the IDM and HDM with N ¼ 100, Dt ¼ p� 10�4, and m ¼ M . CPU time in hours is reported.
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together with the IDM. It can be observed from Table 5 that the results of both 1D and quasi-1D

problems are quite similar. In particular, when M ¼ 16, the L2 errors in Ez and Hy are still very low.

However, when M ¼ 32, the accuracy level quickly goes down. This is actually due to the Lagrange
weights used in the IDM increase exponentially for high-order derivative approximations. It is well

known that under such an occasion, the resolution of representation coefficients in the IDM becomes

an unstable procedure as m goes to infinity. On the other hand, for a finite but quite large m, like 32,

the calculation of exponentially increased coefficients usually introduces huge round-off errors in nu-

merical computations, although the FD weights are properly scaled as suggested in [39] in our com-

putation. By noted this point, it is recommended in [39] that the number of FPs m should be quite

small. However, for some special applications involving high-frequency waves, it might be desired to

generate as many as hundreds of grid stencils in practice. The extension of the IDM method to these
applications is clearly questionable. Meanwhile, the CPU time of the IDM with large m could be quite

large, e.g., it could be a few hours for m ¼ 32 as shown in Table 5.

3.3. Stability analysis

It is of great interest to explore the use of the IDM method together with other high-order time-domain

approaches, due to its excellent performance with the FDTD scheme. Computationally, we just need to

simply change the basic differential stencil used in the approximations (18) and (19). However, it is found
that for the simple 1D model problem, when an MRTD kernel, which is constructed based on the Battle–

Lemarie scaling function [17,18], is used, the entire procedure could be unconditionally unstable, while the

MRTD method is free of this instability issue without adopting the IDM. This means that the use of the

IDM method may introduce certain instability problems. Therefore, the stability issue of the IDM method

demands careful studies. The lack of necessary analysis of stability for the DMmethods has also been noted

by Hesthaven [4].

For simplicity, the stability issues are dealt with in this section primarily for the 1D model problems. The

results can be similarly extended to other 1D problems. We first consider the stability of the present dis-
cretization procedure without using the IDM method. It is well known that the general stability condition

for solving Maxwell’s equations can be given as [4]

Dt6C0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minf�lg

p
Dx:

The value of the constant C0 is determined by both the spatial and temporal discretizations. We can further

separate these two sources, by considering a more detailed condition [49]

Dt6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minf�lg

p C
q1 Dx; ð27Þ

where the constant C is related to the time-stepping scheme, while q1 is induced by the spatial approxi-

mation. In particular, q1 is the limit value of the spectral radius, qS, of the spatial discretization matrix S

given in (22), and

qS ¼ max
j¼1;...;2N

jkSj j;

where kSj are eigenvalues of qS. Numerically, it has been found [49] that, when Dx ! 0, qS ! q1 from

below. Usually, q1 is a product of a factor with
ffiffiffi
d

p
[49], where d ¼ 1; 2; 3 is the dimension number.

We first consider the values of q1 for different spatial schemes. For the FDTD methods, it is known that

we have q1
FDTD;M¼1 ¼ 2

ffiffiffi
d

p
and q1

FDTD;M¼2 ¼ 7
3

ffiffiffi
d

p
[49]. Here two subscripts are added to q1, in order to

identify different spatial discretization schemes. The constants containing in q1 are clearly determined by
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the differential kernel being used. Following the stability analysis considered in the MRTD method [18], it

can be easily verified that we actually have

q1 ¼
ffiffiffi
d

p XM
j¼�M ;j 6¼0

jwjj: ð28Þ

The analyses of the FDTD methods in [49] are in consistent with Eq. (28), i.e., when M ¼ 1,P1

j¼�1;j 6¼0 jwjj ¼ j � 1j þ j1j ¼ 2 and when M ¼ 2,
P2

j¼�2;j 6¼0 jwjj ¼ 1
24
ðj1j þ j � 27j þ j27j þ j � 1jÞ ¼ 7

3
.

By using the MRTD method,
PM

j¼�M ;j 6¼0 jwjj converges to a limit, which is reported to be about

2=0:6371 ¼ 3:1392, after M P 16 [18]; see Fig. 6. The stability analysis of the DSC spatial discretization can

be similarly analyzed for the LSTD method [24–26]. In Fig. 6, we also plot the stability factor of the LSTD

method. It is clear that the factor of the LSTD converges faster than that of the MRTD. The limit value of
the LSTD is found to be p, which is the same as that of the Fourier pseudospectral method [60]. It is well

known that the Battle–Lemarie scaling function has closed form expression only in the spectral domain.

For time-domain computations, the MRTD kernel is constructed via a truncation to an accuracy level of

0.1% [17,18]. We thus believe that if a more accurate truncation is considered in the MRTD method, its

stability factor should be closer to p.
We then consider the stability factor C for time-stepping schemes. It is known that we have C ¼ 2 for

usual staggered Leapfrog time integration [49]. We are interesting to find such a C for the RK4 time in-

tegration. To this end, we rewrite Eq. (23) into the form

Qnþ1 ¼ I

�
þ Dt
Dx

Sþ 1

2

Dt2

Dx2
S2 þ 1

6

Dt3

Dx3
S3 þ 1

24

Dt4

Dx4
S4

�
Qn: ð29Þ

It is clear that this procedure is stable provided that

1

���� þ Dt
Dx

kSj þ
1

2

Dt2

Dx2
ðkSj Þ

2 þ 1

6

Dt3

Dx3
ðkSj Þ

3 þ 1

24

Dt4

Dx4
ðkSj Þ

4

����6 1 ð30Þ

for any j ¼ 1; . . . ; 2N and all Dx. Moreover, since the differential matrix of central approximations to linear

hyperbolic systems is antisymmetric, eigenvalues kSj of the differential matrix S would be purely imaginary
numbers [60]. The similar observation has been reported in [49] that the real parts of all eigenvalues of S are
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Fig. 6. The plot of the stability parameter q1=
ffiffiffi
d

p
versus the half computational bandwidth M for both LSTD and MRTD methods.



S. Zhao, G.W. Wei / Journal of Computational Physics 200 (2004) 60–103 77
of Oð10�16Þ for all Dx. Consequently, it can be easily derived from (30) that when kSj lie on the imaginary

axis, the stability factor of RK4 is C ¼ 2
ffiffiffi
2

p
[45]. This is in consistent with the fact that the stability region

of RK4 extends from the origin a distance of 2
ffiffiffi
2

p
up and down the imaginary axis [60]. Therefore, when the

IDM is not carried out, the entire discretization procedure (29) is stable when

Dt6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minf�lg

p 2
ffiffiffi
2

p

q1 Dx: ð31Þ

In our numerical experiments, the stability constraint (31) has been found to be in excellent agreement with
numerical results.

Following the same procedure, we then consider the possible influence of the IDM method to the sta-

bility of the entire discretization. For the FDTD approximations, the stability conditions, after the IDM is

carried out, are found to be almost the same as those without the IDM modeling, as shown in Fig. 7. In

particular, for all testedM values (1, 2, 4, 8, 12, and 16) and all tested Dx, the real parts of the eigenvalues of
the spatial discretization matrix S are all smaller than 1.0� 10�16. After applying the IDM method, the

spectral radius of S, i.e., qS, is usually a little bit smaller than that of the standard FDTD; see Fig. 7.

However, such differences are of extremely small magnitude so that they essentially do not alter the nu-
merical stability constraint. Moreover, when Dx approaches to zero, such differences quickly vanish, and

both spectral radii converge to the same q1. Therefore, the stability condition (31) holds for the FDTD

approximation with the IDM modeling, which has also been verified numerically.

The situation is different for the MRTD method [17,18]. Without the IDM, the MRTD method is

conditionally stable with the stability constraint being Eq. (31). However, when the IDM is conducted, the

MRTD approximation is found to be unconditionally unstable by employing a commonly used half stencil

length M , i.e., 86M 6 16. By taking a more detailed investigation, it is found that many eigenvalues of the

spatial discretization matrix S have non-zero real parts now. Furthermore, although the maximum value of
imaginary parts of kSj is still very close to

PM
j¼�M ;j 6¼0 jwjj, the spectral radius of S, qS, now is solely fixed by

the real parts of kSj . In particular, the dominant eigenvalue of S takes the form �qS þ 0i, with

qS �
PM

j¼�M ;j 6¼0 jwjj. It is clear from Fig. 8 that qS becomes a very large number after the IDM is carried

out, and it also converges to certain limit as Dx ! 0. It is noted that the stability factor C ¼ 2
ffiffiffi
2

p
for the

RK4 temporal integration is derived under the assumption that the real parts of kSj are all zero. Thus, for

the MRTD with the IDM, the stability factor C is no longer 2
ffiffiffi
2

p
. For the specific form of the dominant

eigenvalue, qS þ 0i, to satisfy the requirement (30) for all j ¼ 1; . . . ; 2N and all Dx, it is equivalent to force

1

�
þ Dt
Dx

qS þ 1

2

Dt2

Dx2
ðqSÞ2 þ 1

6

Dt3

Dx3
ðqSÞ3 þ 1

24

Dt4

Dx4
ðqSÞ4

�
6 1

for all Dx. Obviously, this is true only if ðDt=DxÞqS ¼ 0. For a concrete discretization, we have Dx > 0 and

qS > 0. Then, the MRTD method with the IDM is stable if Dt ¼ 0, i.e., it is unconditionally unstable.

We further analyze the stability of the LSTD method [24–26] with the IDM. In the DSC spatial ap-

proximation of the LSTD method, apart from the different half computational bandwidth M can be freely

chosen, there is a parameter r in the DSC algorithm which can be adjusted to deliver higher accuracy for the

same M [22]. In practice, one can select the desired DSC parameters M and r according to the nature of the

problem under consideration by means of the discrete Fourier analysis [24,54]. In the present study, it is

found that by using a quite small r, the stability constraint of the LSTD method could be the same after the
IDM is carried out. In Fig. 9, we consider the DSC approximation with M ¼ 16. When r ¼ 2:1, similar to

the FDTD method, the stability condition of the LSTD method essentially remains unchanged after

considering the IDM modeling. When we consider a larger r ¼ 2:2, the spectral radius qS with the IDM

attains a larger value than that without the IDM. Nevertheless, all eigenvalues of S still have only imag-

inary parts, so that the stability condition (31) still holds with C ¼ 2
ffiffiffi
2

p
for the LSTD method with the
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Fig. 7. The spectral radius qS as a function of mesh size for the FDTD schemes. (a) M ¼ 1; (b) M ¼ 2; (c) M ¼ 4; (d) M ¼ 8; (e)

M ¼ 12; (f) M ¼ 16. For M ¼ 1, 2, 4, 8, 12, and 16, we have q1 ¼ 2, 2.3333, 2.5726, 2.7408, 2.8148, and 2.8588, respectively.
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IDM, except now the analytical value of q1 is unknown. As can be seen from Fig. 9(b), q1 becomes larger

in the present case. Thus, the stability constraint of the LSTD method becomes more severe after using the

IDM. When an even larger r, e.g., rP 2:3 for M ¼ 16, is used, the LSTD method becomes unconditionally

unstable. The similar difficult of the MRTD method is observed again herein. In particular, the dominant

eigenvalue of S also takes the form �qS þ 0i, with qS >
PM

j¼�M ;j6¼0 jwjj, so that C 6¼ 2
ffiffiffi
2

p
but C ¼ 0. These

stability analyses are in excellent agreement with our numerical experiments. Although a small r could

always be used in the LSTD method to avoid the stability problem in electromagnetic applications, these r
values are actually smaller than the usual optimal r values of the DSC approximation for a fixed M [24,54].

Thus, the high accuracy and applicability of the IDM method with LSTD are reduced.
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In summary, the use of the IDM method may introduce additional problems on stability for high-order

time-domain Maxwell solvers. The exception of the FDTD method in the present investigation may be due
to the fact that the FD weights are harmoniously used in both the IDM modeling and the FDTD ap-

proximation. Essentially the instability associated with other high-order time-domain schemes is believed to

be linked with the fact that the amplitudes of the Lagrange FD weights used in the IDM increase expo-

nentially as the differentiation order increases. However, the detailed insight of the mechanism of the in-

stability observed in the MRTD and LSTD approaches is still unavailable. The stability issue of the IDM

method calls for further studies.

It is noted that the stability analyses in the present study could be also useful to the explicit DM con-

sidered in the BPS method [39,40]. The interface modeling in the BPS method is carried out in a post-
processing manner, so that the stability of the explicit DM could not be analyzed in a systematic way, as in

the present study. Alternatively, by means of the IDM modeling, the present results on stability can be

easily extended to the BPS method. In particular, it is expected that the stability constraint in the BPS

method would be more severe, because the global discretizations in the BPS method [39,40] are essentially

one-sided approximations. Only global FD weights are employed in the BPS method [39,40]. Based on the

present analysis, it is also supposed that the problems of instability may occur if other popular basis

functions, such as Chebyshev and Legendre polynomials, are utilized. Moreover, the nonuniform grid in

these spectral methods introduces additional stability problems.

3.4. Hierarchical derivative matching

It is found in our stability analysis that the direct application of the IDM method might introduce

stability problems for the MRTD and LSTD approaches. Moreover, we have shown that the IDM

modeling with a large number of FPs suffers from the loss of precision, and could be time-consuming.

Furthermore, the difficult of handling mixed derivatives is encountered when the present IDM scheme is

generalized to higher dimensions, an issue for which is fully accounted in Section 4. Thus, the IDM method
is not robust enough for general electromagnetic computations. Therefore, it is of interest to seek after

alternative ways. For this purpose, a hierarchical derivative matching (HDM) method is developed in the

present study.

The essential motivation of the HDM method is to bypass the large size algebraic system introduced

in high-order jump conditions in the IDM method. Nevertheless, the main philosophy of the IDM

method is still inherited in the HDM method. In fact, an IDM with a small number of FPs is carried out
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Fig. 9. The spectral radius qS as a function of mesh size for the LSTD scheme withM ¼ 16. (a) r ¼ 2:1; (b) r ¼ 2:2; (c) r ¼ 2:3 without
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in the first stage of the HDM method. The basic consideration of the HDM method is that we disas-

sociate the matrix size involved in the IDM method and the total number of FPs. The latter is usually
determined by the applications, such as the stencil length 2M being used in a specific time-domain solver.

To achieve more general applicability, we always maintain the translation invariance property of the

basic differential stencil, so that the total number of FPs, 2m, is still be equal to 2M . In the HDM

method, we introduce a new integer parameter l, which is usually small and satisfies 16 l6m, and re-

quire the dimensional size involved in the IDM method at the first stage to be 2l, see Fig. 10. In other

words, we first establish the representation coefficients via solving an algebraic system of the IDM

method for 2l nearest neighboring FPs, i.e., fm�lþ1; . . . ; fmþl in Fig. 10. We then seek for a different

procedure to generate the representation coefficients for the rest 2m� 2l FPs, f1; . . . ; fm�l and
fmþlþ1; . . . ; f2m. It is obviously crucial that the high accuracy of the IDM method should not be destroyed

in the present HDM modeling.

In the HDM method, the determination of representation coefficients for the rest 2m� 2l FPs is carried
out in a recursive manner. In each recursive step, we determine only one FP at each side of the material

interface. For example, we first consider the determination for fm�l and fmþlþ1, then for fm�l�1 and fmþlþ2,

and so on. Totally m� l recursive steps are taken in this dynamic procedure. At each recursive step, the FPs

with known representation coefficients are referred to as master FPs, while the two new FPs are called

subordinate FPs. A pseudoprocedure of the HDM modeling is given as follows:



ξ
ε1 µ1(    ,    ) (    ,    )ε2 µ2

fm+1 f2mfm+l

gm+1 g2m

x=

fm

gmg1

f1

fm+l+1

fm-l fm-l+1

Fig. 10. Illustration of FPs and notation used in the HDM method. The 2l FPs inside the braces are involved in the first step of the

HDM method, i.e., the ordinary IDM modeling.
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A pseudo-procedure of the HDM method

Stage 1. Carry out the IDM modeling for the interior 2l FPs, fm�lþ1; . . . ; fmþl.

Stage 2. The recursion

DO k ¼ lþ 1;m
Known values: representation coefficients of 2ðk � 1Þ master FPs, fm�kþ2; . . . ; fmþk�1

Unknowns: representation coefficients of 2 subordinate FPs, fm�kþ1 and fmþk

Use known values and low-order jump conditions to determine unknowns

END DO

The remaining issue of the HDM method is how to determine the representation coefficients of two sub-

ordinate FPs. Without loss of generality, we take a simple case with m ¼ lþ 1 as example. Suppose that the

coefficients ri;j for i; j ¼ 2; . . . ; 2m� 1 in Eq. (11) are known from the previous IDM or HDMmodeling. We

need to determine the rest coefficients in matrix R ¼ ðri;jÞ, for i; j ¼ 1; . . . ; 2m. We first set ri;1 ¼ ri;2m ¼ 0, for
i ¼ 2; . . . ; 2m� 1. In other words, the 2l master FPs f2; . . . ; f2m�1 are represented by the interior 2l grid

points g2; . . . ; g2m�1 only. By doing this, the accuracy of the representation coefficients for the master FPs

remains the same and no additional complexity involves.

We then consider using all grid points g1; . . . ; g2m to represent two subordinate FPs f1 and f2m. Since we
have only two unknown FPs now, we can only consider two low-order jump conditions, such as zero- and

first-order ones. Take Hy as an example, these two jump conditions are given as

Hyðn�Þ ¼ HyðnþÞ;
1

�1
H ð1Þ

y ðn�Þ ¼ 1

�2
H ð1Þ

y ðnþÞ: ð32Þ

The FD approximations to Eqs. (32) on both fictitious and grid points are

Xm
i¼1

w0;igi þ
X2m
i¼mþ1

w0;ifi ¼
Xm
i¼1

w0;ifi þ
X2m
i¼mþ1

w0;igi; ð33Þ
1

�1

Xm
i¼1

w1;igi

"
þ
X2m
i¼mþ1

w1;ifi

#
¼ 1

�2

Xm
i¼1

w1;ifi

"
þ
X2m
i¼mþ1

w1;igi

#
: ð34Þ

Similarly, we symbolically substitute fi ¼ RiG and gi ¼ IiG into Eqs. (33) and (34) to attain

Xm
i¼1

w0;iITi þ
X2m
i¼mþ1

w0;iRT
i ¼

Xm
i¼1

w0;iRT
i þ

X2m
i¼mþ1

w0;iITi ; ð35Þ
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1

�1

Xm
i¼1

w1;iITi

"
þ
X2m
i¼mþ1

w1;iRT
i

#
¼ 1

�2

Xm
i¼1

w1;iRT
i

"
þ
X2m
i¼mþ1

w1;iITi

#
: ð36Þ

Unlike the previous case, now Ri of 2l master FPs f2; . . . ; f2m�1 are known. Thus, there are only two un-

knowns in Eqs. (35) and (36): R1 and R2m. Therefore, without resorting to a numerical algebraic solver, RT
1

and RT
2m can be directly resolved

RT
1 ¼

1
�2
w1;2mV1 � w0;2mV2

1
�2
w1;2mw0;1 � 1

�1
w1;1w0;2m

RT
2m ¼ w0;1RT

1 � V1
w0;2m

;

V1 ¼
Xm
i¼1

w0;iITi þ
X2m�1

i¼mþ1

w0;iRT
i �

Xm
i¼2

w0;iRT
i �

X2m
i¼mþ1

w0;iITi ;
V2 ¼
1

�1

Xm
i¼1

w1;iITi

"
þ
X2m�1

i¼mþ1

w1;iRT
i

#
� 1

�2

Xm
i¼2

w1;iRT
i

"
þ
X2m
i¼mþ1

w1;iITi

#
:

For cases with m > lþ 1, we can generate coefficients Ri of two subordinate FPs each time, and repeat this

procedure as often as needed by means of an index replacement.

It is interesting to investigate the accuracy level of the HDM method. In the first stage of the HDM

method, the accuracy of the IDM modeling is clearly determined by the parameter l, i.e., it is of ð2lÞth-
order. In the following HDM recursion, at the first step, the accuracy of the FD approximations con-

sidered in Eqs. (33) and (34) is of ð2lþ 2Þth-order for the two new subordinate FPs. Moreover, since the

representation coefficients for the interior 2l master FPs are unchangingly shifted. The representation

accuracy of these 2l master FPs is maintained as ð2lÞth-order, so that the final accuracy of entire HDM
modeling remains as ð2lÞth-order. The same conclusion can be drawn for the rest recursive steps.

Therefore, the numerical accuracy of the HDM method is solely determined by the parameter l. In other

words, the HDM method is capable of maintaining the high accuracy of the IDM method when in-

troducing more FPs.

Apart from the formal order of accuracy, the numerical computations are usually subject to many other

error sources, such as the round-off error due to the finite precision limit. It has been found that when m is

large, the IDM method may lose the precision, owing to the round-off error. However, for the HDM

method, the FD approximations to very high-order derivatives are avoided so that the problem of round-
off error accumulations is well under controlled. Consequently, the HDM method is well suited for ap-

plying to problems requiring a large m. Meanwhile, since the resolution of a big algebraic system is not

required in the HDMmethod, the HDMmethod usually is much faster than the IDM method to generate a

large number FPs. For example, a few hours are required for the IDM method when m ¼ 32, while for the

HDM method by using m ¼ 32 and l ¼ 8, 1 or 2 min CPU time would be enough. Therefore, the HDM

method is an efficient means for enforcing jump conditions to high-order accuracy.

As the stability of IDM method was one of concerns for the motivation of the HDM method, we ex-

amine the stability of the HDM and see whether there is any improvement in the stability. Similar to the
IDM method, the HDM method is found to be free of additional stability problem when applying to the

high-order FDTD methods. It is of great interest to investigate the stability of the MRTD and LSTD

approaches when the HDM modeling is considered. It is found from our analysis that the MRTD method

with the HDM could be conditionally stable when l is small, see Fig. 11. In particular, after the HDM

modeling, the MRTD method can still have the same stability condition when l6 3, for 86M 6 16.

However, when lP 4, the scheme becomes unconditionally unstable again.
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Fig. 11. The spectral radius qS as a function of mesh size for the MRTD scheme. (a) M ¼ 8 and l ¼ 3 (q1 ¼ 3:1335 ¼
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(b) M ¼ 16 and l ¼ 3 (q1 ¼ 3:13886 ¼

P16
j¼�16;j6¼0 jwjj).
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Similarly, the LSTD method becomes more stable with the HDM than with the IDM. In Fig. 12, the

spectral radius for the LSTD with M ¼ 16 and different r values is shown. For each parameter r, the
maximum l of the HDM method which produces stable approximation is considered. Recall that in Fig. 9,

when a larger r is used for a fixedM , the chance of the LSTD method with the IDM to be unstable could be
larger. The similar finding is still valid for the LSTD method with the HDM, if we consider r being in-

creased with fixed M and l. On the other hand, similar to the MRTD method with the HDM, it is found in

our studies that the possibility of the LSTD method with the HDM to be stable is increased if a smaller l is
used for given M and r. Therefore, for a fixed M , when r increases, in order to maintain the stability of the

entire approximation, a smaller l has to be employed, as can be seen clearly from Fig. 12. It should be

emphasized that for M ¼ m ¼ 16, the parameter r could be even larger than 2.8, if a smaller l is used. In
fact, the range 2:36 r6 2:8 is sufficiently large for the purpose of selecting optimal r values of the DSC

algorithm with M ¼ 16 for scientific computing [24,54]. Similar findings also hold for different M values. It
is also noted that the situation in which the approximation is still conditionally stable, but with a more

severe constraint, does not appear in the LSTD method with the HDM. In general, one can draw the

conclusion that the time-domain solvers of Maxwell’s equations with the HDM method are usually more

stable than those with the IDM method.

The studies on the accuracy and stability of the HDMmethod also reveal rules of selecting the parameter

l in the HDM modeling. The general guideline is that, when a higher accuracy is expected, a larger l should
be chosen, while when a more stable scheme is required, a smaller l could be a better choice. In real world

applications, one should properly choose l in the HDM modeling according to the nature of the problem
under consideration, and the time-domain solver being employed.

In comparing with the IDM, the HDM method is more efficient and stable, thus more robust for ap-

plications in CEM. Nevertheless, due to a small l is typically employed, the order of accuracy of the HDM

method is usually lower than that of the IDM method. A recursive procedure is introduced in the HDM

method to increase the applicability of the IDM method. Alternatively, we note that using different iter-

ation schemes characterized by the matrix sizes is another possible way to resolve function values at

subordinate FPs. As well, an iteration procedure might even improve the accuracy of the HDM method.

However, this has not been tested yet.
In summary, both the IDM and HDM modelings have their own merits and limitations. Nevertheless,

the IDM method can be regarded as a special case of the HDM method with m ¼ l. In fact, by selecting the

parameter l, one can freely choose between two modelings without any need to change one’s computer

code, while the selection of accuracy and stability should be guided by the nature of the problem under
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Fig. 12. The spectral radius qS as a function of mesh size for the LSTD scheme with M ¼ 16. (a) r ¼ 2:3 and l ¼ 10; (b) r ¼ 2:4 and

l ¼ 9; (c) r ¼ 2:5 and l ¼ 7; (d) r ¼ 2:6 and l ¼ 7; (e) r ¼ 2:7 and l ¼ 6; (f) r ¼ 2:8 and l ¼ 5. In all cases, we have q1 ¼ p.
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study. Thus, without loss of the generality, we could refer to both HDM and IDM modelings as the HDM

method.

3.5. Further numerical tests

We explore the numerical performance of the HDM method for CEM in this subsection. Two model

problems studied in Section 3.2 are investigated by using the HDM method with a large number of FPs.

The results of the HDM method for cases with large m ¼ M are given in Table 5. It is clear from table that
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the HDM method performs very well for cases with a large number of FPs, in terms of both efficiency and

accuracy, for both the 1D and quasi-1D model problems, as expected.

Our stability analyses demonstrate that the MRTD with the IDM is always an unstable procedure,
while the MRTD with the HDM could be a stable scheme. Thus, by using the HDM modeling, the

MRTD method could be applicable to inhomogeneous electromagnetic computations to achieve high

accuracy. We thus consider two model problems by using both the MRTD and LSTD methods together

with the HDM, see Table 6. For the 1D model problem, it can be seen from the table that after using the

HDM method, the MRTD results generally become more accurate. Significant improvement in accuracy

is also observed for the LSTD method. Furthermore, for both cases with and without the HDM method,

the LSTD results are much more accurate than those of the MRTD. This finding is consistent with

outcomes presented in [26].
For the quasi-1D model problem, however, it is found that the stability condition of both time-domain

approaches is generally more severe than that for the 1D model problem. This is probably owing to the

discontinuous nature of the solution. By using the MRTD method with the HDM, the entire approxi-

mation is stable only when l ¼ 1. Consequently, the accuracy of the MRTD method with the HDM is quite

low. Hence, a fine grid resolution with N ¼ 200 is employed in the MRTD method for the quasi-1D model

problem in Table 6. It can be seen from Table 6 that by using M ¼ 16, the MRTD results become much

better when the HDM modeling is carried out. However, the MRTD results with M ¼ 8 are all quite in-

accurate no matter whether the HDM is applied or not. For the same quasi-1D model problem, by using
the LSTD method with the HDM, extremely accurate results can be obtained again with N ¼ 100. In fact,

the results of the LSTD method with the HDM for the quasi-1D model problem are quite close to those

for the 1D model problem, albeit now the scheme has a slightly more severe stability constraint. In general,

the numerical studies considered in Table 6 well demonstrate the robustness of the HDM method for

electromagnetic applications.

Before considering the extension of higher dimensions, it is commented that there is a family of DM

schemes that can be developed to generalize the FDTD for handling material interfaces. Essentially, this

family of schemes makes use of different numbers of FPs to achieve a given order of accuracy, and for a
given number of FPs, complements by appropriate one-sided FD approximation of derivatives near the

interface. Therefore, the first scheme of the family uses only the zeroth order DM condition, fully one-sided

approximations and no FP, whereas the last scheme is the present HDM method which uses the largest

number of FPs as well as largest number of DM conditions and no one-sided approximation. It is expected
Table 6

The L2 errors at t ¼ p by using both the MRTD and LSTD approaches together with the HDM method

Scheme Problem M r Without HDM With HDM

Ez Hy l Ez Hy

MRTD 1D 8 – 2:84ð�1Þ 3:62ð�1Þ 3 2:43ð�1Þ 3:08ð�1Þ
16 – 4:50ð�2Þ 5:80ð�2Þ 3 2:87ð�3Þ 3:74ð�3Þ

Quasi-1D 8 – 3:17ð�1Þ 3:79ð�1Þ 1 3:65ð�1Þ 4:41ð�1Þ
16 – 1:97ð�1Þ 2:29ð�1Þ 1 7:67ð�2Þ 9:12ð�2Þ

LSTD 1D 8 1.7 4:21ð�2Þ 5:43ð�2Þ 3 2:87ð�5Þ 3:48ð�5Þ
16 2.4 4:22ð�2Þ 5:44ð�2Þ 6 4:97ð�10Þ 6:57ð�10Þ

Quasi-1D 8 1.7 1:97ð�1Þ 2:30ð�1Þ 3 2:91ð�5Þ 3:41ð�5Þ
16 2.4 1:98ð�1Þ 2:30ð�1Þ 6 5:90ð�10Þ 7:54ð�10Þ

Here, x � 5:07218116182516 and x � 5:05589071456588 for the 1D and quasi-1D model problem, respectively. For the LSTD

method, conventionally used parameter values of r are employed. Here Dt ¼ p� 10�4 and m ¼ M . A fine resolution N ¼ 200 is

employed in the MRTD method for the quasi-1D model problem. In other cases, a normal resolution N ¼ 100 is used.
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that the numerical stability and robustness of this family of schemes vary from scheme to scheme. The

flexibility of being implemented in 3D modeling is another criterion for accessing these schemes. Obviously,

it is both interesting and important to systematically investigate this family of methods in the future.
4. Beyond one-dimension

We explore the use of the HDM modeling for 2D electromagnetic applications in this section. First, the

complexity and difficulty of DM modeling in 2D are analyzed in detail. The use of central FD approxi-

mations for 2D DM is explored and a simple quasi-fourth-order scheme is then introduced. A general 2D

HDM method is presented. For simplicity, the basic time-domain solver is fixed to be the standard FDTD
method in this section, although the proposed DM methods may also be applied to other high accuracy

time-domain approaches. The idea underlying the present 2D studies in this section could be similarly

extended to a general 3D scenario.

4.1. 2D considerations

In this section, we consider the 2D TM equation (2) for ðHx;Hy ;EzÞ in the vector form

oq

ot
¼ A

oq

ox
þ B

oq

oy
; ð37Þ
q ¼
Hx

Hy

Ez

2
4

3
5; A ¼

0 0 0

0 0 1=l
0 1=� 0

2
4

3
5; B ¼

0 0 �1=l
0 0 0

�1=� 0 0

2
4

3
5: ð38Þ

It is supposed that the media are non-magnetic with l ¼ 1 and are homogeneous in the y-direction. Similar

to the 1D cases, the electric permittivity � is a piecewise constant with two values �1 and �2 in the x-direction.
Again, we assume that the interface is at x ¼ n. The case that there are multiple interfaces can be similarly

treated. The notations for A1, A2, B1 and B2 can be similarly defined. Following the convention of CEM, a

2D staggered grid is used for the fields Ez, Hx and Hy [24–26].

We first establish physical jump conditions at x ¼ n. It is worthwhile to note that we have three con-

ditions for three field components in each order of jump conditions. Among them, only two conditions are
employed in the DM modeling, because such a modeling is carried out for Ez and Hy only. For the field

component Hx, since derivative of Hx with respect to x is not required to be evaluated in the resolution of the

TM equation (2), it is not necessary to conduct a DM modeling for Hx.

The zeroth-order jump condition states that the fields are continuous across the interface

qðn�; tÞ ¼ qðnþ; tÞ: ð39Þ

Similar to the 1D case, the first-order time derivative of q is also continuous across the interface. Thus, we

have the first-order jump condition

A1

o

ox

�
þ B1

o

oy

�
qðn�; tÞ ¼ A2

o

ox

�
þ B2

o

oy

�
qðnþ; tÞ: ð40Þ

More insights can be gained if we rewrite condition (40) into its complete form:

o

oy
Ezðn�; tÞ ¼

o

oy
Ezðnþ; tÞ; ð41Þ
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o

ox
Ezðn�; tÞ ¼

o

ox
Ezðnþ; tÞ; ð42Þ
1

�1

o

ox
Hyðn�; tÞ

�
� o

oy
Hxðn�; tÞ

�
¼ 1

�2

o

ox
Hyðnþ; tÞ

�
� o

oy
Hxðnþ; tÞ

�
: ð43Þ

Since the media are homogeneous in the y-direction, the derivatives of fields with respect to y are con-

tinuous throughout the domain. Therefore, condition (41) is trivially valid. The condition (42) is also trivial,

since it is the same as its counterpart in the 1D case. However, the third condition (43) is genuinely

nontrivial, because of the term ðo=oyÞHx. This condition is identical to the corresponding 1D jump con-

dition only when ðo=oyÞHx ¼ 0, which, however, is not true for general 2D applications. Therefore, one has

to consider the derivative approximation in the y-direction along the interface x ¼ n in the 2D DM

modeling. This is dramatically different from the 1D studies and introduces considerable difficulties, even

though ðo=oyÞHx is continuous along x-direction at x ¼ n.
Similarly, the second-order and the third-order jump conditions can be given as

A1

o

ox

�
þ B1

o

oy

�2

qðn�; tÞ ¼ A2

o

ox

�
þ B2

o

oy

�2

qðnþ; tÞ; ð44Þ
A1

o

ox

�
þ B1

o

oy

�3

qðn�; tÞ ¼ A2

o

ox

�
þ B2

o

oy

�3

qðnþ; tÞ: ð45Þ

In the explicit form, we have

1

�1

o2Hxðn�; tÞ
oy2

� 1

�1

o2Hyðn�; tÞ
oxoy

¼ 1

�2

o2Hxðnþ; tÞ
oy2

� 1

�2

o2Hyðnþ; tÞ
oxoy

; ð46Þ
1

�1

o2Hyðn�; tÞ
ox2

� 1

�1

o2Hxðn�; tÞ
oxoy

¼ 1

�2

o2Hyðnþ; tÞ
ox2

� 1

�2

o2Hxðnþ; tÞ
oxoy

; ð47Þ
1

�1

o2

ox2

�
þ o2

oy2

�
Ezðn�; tÞ ¼

1

�2

o2

ox2

�
þ o2

oy2

�
Ezðnþ; tÞ; ð48Þ
1

�1

o3

ox2oy

�
þ o3

oy3

�
Ezðn�; tÞ ¼

1

�2

o3

ox2oy

�
þ o3

oy3

�
Ezðnþ; tÞ; ð49Þ
1

�1

o3

ox3

�
þ o3

oxoy2

�
Ezðn�; tÞ ¼

1

�2

o3

ox3

�
þ o3

oxoy2

�
Ezðnþ; tÞ; ð50Þ
1

�21

o3

ox3

�
þ o3

oxoy2

�
Hyðn�; tÞ �

1

�21

o3

oy3

�
þ o3

ox2oy

�
Hxðn�; tÞ

¼ 1

�22

o3

ox3

�
þ o3

oxoy2

�
Hyðnþ; tÞ �

1

�22

o3

oy3

�
þ o3

ox2oy

�
Hxðnþ; tÞ: ð51Þ

It is noted that in order to numerically deal with these conditions, cross derivatives, such as ðo2=oxoyÞHy ,

are required to be discretized. To approximate a cross derivative by using x and y differential kernels with
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length being, respectively, 2Mx and 2My , a total number of 4MxMy grid points is involved. Obviously, the

computational cost is then extremely expensive, especially when Mx and My are quite large. In viewing this,

in the 2D BPS method [40], only one FP at each side of the interface was considered for each field com-
ponent. Consequently, only the zeroth and first-order jump conditions were used so that the approximation

of cross derivatives involved in second or higher-order jump conditions is simply avoided. In the present

study, we tentatively explore the discretization of the cross derivatives in low-order jump conditions in the

next subsection, before a different consideration is taken.

4.2. A quasi-fourth-order scheme

In the embedded FDTD methods [4,45,46,48–51], one-sided approximations and extrapolations are
typically employed to uniformly achieve up to fourth-order of accuracy. It is well known that compared to

one-sided derivative approximations, the central approximations are usually more accurate as well as more

stable. In the 1D case, we have demonstrated that by using central approximations in the HDM/IDM

modeling, one can easily generate embedding FDTD methods systematically to high-order accuracy. It is

thus of great interest to explore if we can achieve higher-order accuracy by considering only central ap-

proximations for the 2D DM modeling in this subsection. In particular, we consider the use of up to third-

order jump conditions to construct a fourth-order DM scheme in 2D.

We first consider the DM modeling for Ez. Similar to the 1D case, we do not require that the interface be
laid on the grid nodes. For a fourth-order scheme, two FPs at each side of the interface are needed. The x
derivatives involved in up to third-order jump conditions can be similarly dealt with. However, two terms

involving y derivatives are also presented in these jump conditions, i.e., o2Ez=oy2 and o3Ez=oxoy2, which
demand additional attention. It can be derived that these two derivatives are continuous across the interface

x ¼ n. For simplicity, we consider the discretization of o2Ez=oy2 here. The modeling of o3Ez=oxoy2 can be

similarly carried out.

At the interface x ¼ n, we have,

o2

oy2
Ezðn�; tÞ ¼

o2

oy2
Ezðnþ; tÞ:

Thus, Eq. (48) can be rewritten as

1

�1

o2

ox2
Ezðn�; tÞ ¼

1

�2

o2

ox2
Ezðnþ; tÞ þ

1

�2

�
� 1

�1

�
o2

oy2
Ezðn; tÞ: ð52Þ

Since the second term on the right-hand side of Eq. (52) is not defined by one-sided limitation, the simplest

way to discretize this term is to consider it in numerical approximation of the TM equations, rather than in

the DM modeling. In other words, in the DM modeling we regard the whole term ðo2=oy2ÞEzðn; tÞ as one
independent variable. The representation of fi by gi is then modified by adding a new term in the sum-

mation

fi ¼
X4
j¼1

ri;jgj þ ri;5
o2

oy2
Ezðn; tÞ for i ¼ 1; 2; 3; 4;

where ri;j are representation coefficients. The extra coefficients ri;5 can be similarly determined as ri;j in the

DM modeling. It is noted that this DM procedure is computationally efficient, since it is equivalent to

increase one more grid point and maintain the same number of FPs in comparing with the 1D DM

modeling. Furthermore, this procedure is numerically attainable. However, this procedure calls for the
need of evaluation of o2Ezðn; tÞ=oy2 at each time step in the time-domain computation. In general cases
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that the interface x ¼ n is not on the Ez nodes, an interpolation along the x-direction across the interface

has to be resorted to estimate o2Ez=oy2. Unfortunately, such an approximation is at most second-order

accurate for the given set of stencils, just like the direct discretization of Maxwell’s equations. Therefore,
in order to achieve higher-order accuracy by using a Cartesian grid, this simple procedure is not ap-

plicable. Alternatively, we consider the discretization of the y derivatives, o2Ez=oy2 and o3Ez=oxoy2, in the

DM modeling.

To discretize two derivatives, o2Ez=oy2 and o3Ez=oxoy2, by using central FD approximations up to the

fourth-order of accuracy, at least 20 grid points are required for computing Ez, see Fig. 13. In our 1D DM

method, each FP is assumed to be on the same position as one corresponding grid node. However, it is

impossible to do so in the 2D DM modeling. The calculation of 20 FPs is obviously quite expensive.

Furthermore, there are only four jump conditions, so that the algebraic equations for the rest 16 unknowns
are absent unless one-sided approximations are used, which is explored in the next subsection. Note that

making use of higher-order DM condition places a requirement for an even larger computational support,

i.e., more FPs, in order to maintain the accuracy. Hence, there is always an inconsistency between the order

of accuracy and the number of FPs in 2D central approximations. Therefore, in the present 2D study, we

make use of only four FPs, together with 20 grid points, see Fig. 13. As a consequence, we have to choose

Eq. (52) rather than Eq. (48) to be discretized. In Eq. (52), the y derivative o2Ez=oy2 is not defined by one-

sided limitation, so that it is natural to discretize this term by the original grid points only. On the other

hand, if we consider Eq. (48), we must use both FPs and the original grid points to approximate
o2=oy2Ezðn�; tÞ and o2=oy2Ezðnþ; tÞ. For the same reason, since the differentiation over y in o3Ez=oxoy2 is

continuous across the interface, we also rewrite the jump condition for it in the form of Eq. (52), and

discretize the new condition. In summary, only four FPs are utilized to approximate all terms that involve

purely x derivatives in the jump conditions, as in the 1D DM modeling, while 20 original grid points are

used for approximations of the rest terms involving y derivatives. As a result, an 80� 80 algebraic system is

constructed, whose solutions are desired representation coefficients.

The DM modeling for Hy can be similarly carried out. The number of FPs is still 4, however, at least

36 grid points are required now since we also need to discretize derivatives of Hx on staggered nodes.
Similarly, four FPs are employed in the approximation of x derivatives in the jump conditions. Jump
x

y

ξ

Fig. 13. Illustration of fictitious and original grid points used in the quasi-fourth-order DM scheme for Ez. Along the solid line, the

DM is modeled. The FPs are shown as open circles, while the original grid points are shown as filled circles. The FPs are located at the

same position as some grid points.
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conditions involving y derivatives and derivatives for Hx are rewritten in the form of Eq. (52). We then

discretize these derivatives by using the original grid nodes only. The size of the resulting algebraic

system is 144� 144. However, it is noted that now some derivatives, such as o3Hx=ox2oy, are actually
discontinuous at the interface, so that certain reductions of accuracy are encountered in the approxi-

mation of these terms by using the original grid points. We numerically investigate this issue later. Surely,

as an academic exercise on data structure and coding, the treatment of mixed derivatives can still be

improved in many different ways. However, as complicated as it is, it is somewhat impractical to further

pursue these alternatives.

By combining the DM modelings for both Ez and Hy , and by considering a standard fourth-order FDTD

scheme, a new high-order central FDTD scheme is obtained for Maxwell’s Eq. (2). Although the devel-

opment of this scheme is aimed to fourth-order of accuracy, certain reductions in accuracy are introduced
in the DM modeling for Hy . Therefore, this scheme is referred to as a quasi-fourth-order DM (Q4DM)

method. Compared to the fourth-order embedding schemes [4,48–51], the proposed Q4DM scheme might

be technically more complicated and numerically less accurate. However, the proposed method has

promising to be applied to more complex geometries, since it is designed on a simple Cartesian grid and

does not require the interface to be on the grid.

The present study provide us a deep appreciation of difficulties and remaining problems in the 2D DM

modeling. In addition, the 2D DM modeling is also found to be quite complex from the viewpoint of

programming. In the 1D case, the high-order jump conditions can be easily generated. Moreover, these
conditions only involve derivatives with respect to x. Thus, it is quite easy to write a code to construct these

jump conditions. However, in the 2D case, various different cross derivatives appear each time when we

consider a new jump condition. Computationally, these cross derivatives are better to be represented via a

symbolic language, such as MAPLE. If the construction of these jump conditions are handled by a

FORTRAN code, well-designed data structure is indispensable, which is quite difficult for programming

and would be extremely time-consuming. This difficulty restricts the use of high-order jump conditions in

the 2D DM modeling.

Similar to 1D studies, it is also interesting to examine if the present Q4DM scheme can be extended to
high-order systematically. However, besides the associated complexity, such a generalization by considering

high-order jump conditions might not be able to achieve high-order of convergence eventually, simply

because the more and more cross derivatives being discretized on the original grid are actually discontin-

uous. Therefore, we do not consider the generalization of this Q4DM scheme to higher order along this

line. Alternatively, in order to achieve high-order of accuracy, one-sided approximation is considered in the

2D DM modeling in the next subsection, similar to the embedding FDTD schemes [4,45,46,48–51] and the

2D BPS method [40].

4.3. 2D HDM method

A 2D HDM method based on the use of one-sided FD approximations is investigated in this subsection.

Due to the complexity of using high-order jump conditions, only low-order jump conditions are considered

for simplicity. The resulting HDM method could be very similar to the counterpart of the explicit DM

method consider in [40], i.e., only two FPs and two jump conditions are considered for each field com-

ponent. However, in order to maintain the general applicability of adopting the scheme in various time-

domain methods and the simplicity of using structured grid, a uniform staggered grid system, with the FPs
located at the same positions as the corresponding grid nodes, is still employed in the present 2D DM

method. Obviously, certain instability issues would correspondingly arise. We also explore this issue later.

We first select low-order jump conditions. For Hy , the zeroth and first-order jump conditions, Eqs. (39)

and (43), are considered. For Ez, to avoid trivial conditions, we choose first and second-order jump con-

ditions, Eqs. (42) and (48). These four jump conditions are employed throughout the 2D HDM modeling.
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Two y-direction derivatives involve in these four conditions, i.e., ðo=oyÞHxðnÞ and ðo2=oy2ÞEzðnÞ. Note that

these two terms are continuous at the interface x ¼ n. Thus, we rewrite the jump conditions (43) and (48) in

the form

1

�1

o

ox
Hyðn�; tÞ ¼

1

�2

o

ox
Hyðnþ; tÞ þ

1

�1

�
� 1

�2

�
o

oy
Hxðn; tÞ; ð53Þ
1

�1

o2

ox2
Ezðn�; tÞ ¼

1

�2

o2

ox2
Ezðnþ; tÞ þ

1

�2

�
� 1

�1

�
o2

oy2
Ezðn; tÞ: ð54Þ

For simplicity, in approximating the two y derivatives in the present 2D HDM method, we assume the

interface x ¼ n laid on some Ez nodes. It is noted that, in a 2D staggered grid system [24–26], if the interface

x ¼ n is on some Ez nodes, it is also on some Hx nodes. Therefore, by using a body-conformed structured

grid with some Ez (Hx) nodes on the interface, the evaluation of two y derivatives ðo=oyÞHxðnÞ and

ðo2=oy2ÞEzðnÞ at each time step could be quite straightforward and extremely accurate. However, we also

note that the present HDM scheme is then not suitable for general Cartesian grids, but is just applicable to

body-conformed structured grids, similar to the fourth-order embedding FDTD schemes [48–51].
In numerical computation, we regard two derivatives ðo=oyÞHxðnÞ and ðo2=oy2ÞfsEzðnÞ as independent

variables, and simply calculate their representation coefficients in the DM modeling. For instance, we

consider the IDM modeling for Ez here. Apart from two FPs, we need 2l grid points to form the one-sided

approximation, see Fig. 14. We denote the y derivative term ðo2=oy2ÞEzðnÞ as ge. Visually, ge can be just

thought as an extra grid point, as shown in Fig. 14. Then, the jump conditions Eqs. (42) and (54) are

approximated as

Xl
i¼1

wð1Þ
1;i gi þ wð1Þ

1;lþ1f2 ¼ wð2Þ
1;1f1 þ

Xlþ1

i¼2

wð2Þ
1;i glþi�1; ð55Þ
1

�1

Xl
i¼1

wð1Þ
2;i gi

 
þ wð1Þ

2;lþ1f2

!
¼ 1

�2
wð2Þ

2;1f1

 
þ
Xlþ1

i¼2

wð2Þ
2;i glþi�1

!
þ 1

�2

�
� 1

�1

�
ge; ð56Þ

where one-sided FD weights wðkÞ
j;i for i ¼ 1; . . . ; lþ 1, j ¼ 1; 2, and k ¼ 1; 2 can be generated by using the

fast algorithm presented in [61]. Here the subscript j represents the first or second order derivative ap-

proximation, and i is for grid index. The superscripts (1) and (2) are followed from the permittivities �1 and
�2. The representation coefficients for two FPs can be simply solved from Eqs. (55) and (56). The similar

IDM modeling can also be carried out for Hy . The IDM modeling of Ez and Hy constitutes the first stage of
the proposed 2D HDM method, see also Fig. 14.

Similar to the 1D HDM method, in stage two, the representation coefficients of total 2m FPs are cal-

culated via a hierarchical procedure, and usually we have m ¼ Mx. The procedure is recursive, with only two

new representation coefficients being sought at each step. The one-sided FD approximations used in each

step can be similarly formulated as in Eqs. (55) and (56). Again, these FD approximations are of higher

order accuracy than those in stage one. It is noted that during the hierarchical procedure, the number of

grid points is kept the same as in stage one, i.e., 2l, see Fig. 14. Thus, l > m is admissible in the 2D HDM

method. This is different from the 1D HDMmethod. The 2D HDMmodeling stops if lPm. IfMx ¼ m > l,
one additional stage, the stage 3 of the HDM method, is invoked, in which both numbers of FPs and grid

points are increased and central FD approximations are employed, see Fig. 14. In such a case, we have

l ¼ m as in the 1D HDM method. It is obvious that the computation in the present HDM is in much spirit

of that in the 1D HDM method. Thus, it is also quite simple as well as efficient.
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Fig. 14. Illustration of fictitious and original grid points used in the 2D HDM modeling for Hy . The FPs are shown as open circles,

while the original grid points are shown as filled circles. The filled square is for ðo=oyÞHxðnÞ. The stage 3 is invoked only when m > l.
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However, it is well known that one-sided approximation becomes unstable very soon when l is large. It is
thus interesting to carry out a stability analysis of the present 2D HDM modeling. We first consider the

stability issue of the FDTD methods without the HDM method. Similar to 1D studies, we represent the

complete spatial approximation to the right-hand side of Eq. (37) by a matrix S, then the semidiscrete form

of Maxwell’s Eq. (37) can be given as

oQn

ot
¼ 1

D
SQn; ð57Þ

where we assume D ¼ Dx ¼ Dy for simplicity. The vector Q contains all unknowns in Ez, Hx, and Hy , and

its size is determined by the size of computational domain Nx � Ny . Similarly, the full discretization form

combining both the RK4 temporal integration and the spatial approximation in Eq. (57) can be rewritten

as

Qnþ1 ¼ I

�
þ Dt

D
Sþ 1

2

Dt2

D2
S2 þ 1

6

Dt3

D3
S3 þ 1

24

Dt4

D4
S4

�
Qn ¼ S0Qn:

The time-domain computation is stable if the spectral radius of S0 satisfying qS0
6 1 for all D. As in 1D

studies, we calculate the spectral radius of S to see if qS ! q1, where q1 ¼
ffiffiffi
2

p PMx
j¼�Mx;j 6¼0 jwjj: The plots of

qS for different resolutions are given in Fig. 15. These results demonstrate that the stability condition for the
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Fig. 15. The spectral radius qS as a function of mesh size for the FDTD method with the 2D HDM. (a) M ¼ m ¼ l ¼ 2
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2D FDTD method without the HDM is still that for 1D, i.e., Eq. (31). This has also been numerically
verified.

We then consider the stability condition of the FDTD method with the 2D HDM modeling. The plots of

qS with m ¼ l ¼ 2 and m ¼ l ¼ 4 are also shown in Fig. 15. It can be observed that when l ¼ 2, qS also

converges to q1 as D ! 0. But when l ¼ 4, it converges to a value which is slightly larger than q1. In fact,

when l is increased further, the qS can be much larger than q1, see Fig. 16. A fixed grid resolution with

D ¼ 0:025 is used for all cases in Fig. 16. It is found in our analysis that when l6 8, the FDTD approx-

imations can be conditionally stable. For these stable schemes, the stability constraint usually becomes

more severe when l is increased, and we have roughly,

DtK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minf�lg

p 2
ffiffiffi
2

p

qS
Dx: ð58Þ
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Fig. 16. The spectral radius qS as a function of parameter l for the FDTD method with the 2D HDM. A fixed D ¼ Dx ¼ Dy ¼ 0:025 is

used. For Mx ¼ m ¼ 1, 2, and 4, q1 ¼ 2:82843, 3.29983, and 3.63823, respectively. When l is large, the scheme is unconditionally

unstable. The corresponding spectral radius values are connected by dashed lines.
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In other words, the stability condition by using the 2D HDM with l6 8 can be simply estimated

by calculating corresponding qS. This finding holds not only for Mx ¼ 1; 2, and 4 but also for a

larger Mx.
However, when l > 8, the FDTD approximation with the 2D HDM could be unconditionally unstable,

even though no abrupt changes appear in qS curves in Fig. 16. Instead, there are some significant changes in

eigenvalues of S, i.e., kSj . By considering a resolution with D ¼ 0:05, we have examined the real parts of kSj
for different l. When l6 8, except at most a few kSj , most of eigenvalues have zero real parts. Moreover, the

real parts of those exceptional kSj are of small magnitudes. However, when l > 8, the real parts of at least

half eigenvalues are not zero, but of magnitude ranging from Oð10�13Þ to Oð10�15Þ. Furthermore, quite a

few eigenvalues even have real parts which are significantly larger (or smaller) than zero. Consequently, the

corresponding spectral radius of S0, qS0 , is always larger than unit no matter how small Dt is. Thus, the
numerical approximation becomes unconditionally unstable, as confirmed in our numerical experiments.

The same results are also valid for a larger Mx. Therefore, l ¼ 8 might be the highest value which still

produces a stable discretization for the 2D HDM method. We thus choose up to l ¼ 8 in our following

numerical studies for achieving the best accuracy. It is believed that the present stability analysis has sig-

nificantly enhanced our understanding of the potential and limitation in constructing high order embedded

FDTD methods.

The advantages of the HDMmethod, compared to the Q4DM scheme, are its simplicity in programming

and capability to achieve high-order accuracy. However, the requirement of a body fitting structured grid
system may weaken its applicability to general electromagnetic problems. Furthermore, since the one-sided

approximation becomes unstable as l is quite large, it is impossible to systematically generate arbitrarily

high-order schemes within the framework of the proposed HDM method, at least in principle. Finally, it is

noted that in 1D cases, the HDM method can be regarded as a supplement to the IDM method in some

sense. However, in 2D cases, the hierarchical method plays a fundamental role for generating high-order

embedding methods in the DM modeling. For 3D real applications, the HDM method is expected to be

more promising.
4.4. Numerical studies

We numerically investigate the performance of proposed two schemes for 2D electromagnetic applica-

tions in this subsection. The standard high-order FDTD methods are employed for basic spatial discreti-

zation, although other highly accurate time-domain approaches, like the MRTD and LSTD methods, may

also be employed. The time stepping method is still the RK4 scheme. Similar to 1D studies, boundary

extensions are used to impose the PEC conditions.

The first problem being considered has a PEC-bounded domain X ¼ fðx; yÞ j06 x6 5=4; 06 y6 1g. The
permittivity is defined by � ¼ �2 if 06 x6 1

2
and 06 y6 1, and � ¼ �1 if 1

2
6 x6 5

4
and 06 y6 1. The exact

solution for time-varying electromagnetic fields is [49]
Ez ¼
sinða1xÞ sinðbyÞ sinðxtÞ; 06 x6 1

2
06 y6 1;

cosða2xÞ sinðbyÞ sinðxtÞ; 1
2
6 x6 5

4
06 y6 1;

	

Hy ¼
� a1

x cosða1xÞ sinðbyÞ cosðxtÞ; 06 x6 1
2
06 y6 1;

a2
x sinða2xÞ sinðbyÞ cosðxtÞ; 1

2
6 x6 5

4
06 y6 1;

	

Hx ¼
b
x sinða1xÞ cosðbyÞ cosðxtÞ; 06 x6 1

2
06 y6 1;

b
x cosða2xÞ cosðbyÞ cosðxtÞ; 1

2
6 x6 5

4
06 y6 1;
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where a21 þ b2 ¼ �2x2, a22 þ b2 ¼ �1x2, sinða1
2
Þ ¼ cosða2

2
Þ, cosð5a2

4
Þ ¼ 0. As in [49], the first set of parameters to

be tested is chosen as �1 ¼ 1, �2 ¼ 2, a1 ¼ 3p, a2 ¼ 2p, b ¼ p, and x ¼
ffiffiffi
5

p
p.

We first examine the convergence rates of two x derivative approximations in the Q4DM method. The
errors of spatial discretizations of oEz=ox and oHy=ox are computed by using the proposed Q4DM scheme

with exact field values of Ez and Hy at a fixed time, say t ¼ 0:1. The numerically tested convergence rates in

the approximation of oEz=ox and oHy=ox are listed in Table 7. Here, a quite long differential stencil in y
direction with My ¼ 8 is used such that the spatial discretization errors are introduced mainly by the ap-

proximation of x derivatives. It is clear from Table 7 that the approximation of oEz=ox is around fourth-

order. However, the order of accuracy is only around 2.5 for the approximations to oHy=ox. This confirms

our previous discussions that the approximation of cross derivatives which are discontinuous at the in-

terface x ¼ n by using solely the original grid nodes introduces certain reductions in accuracy. Fortunately,
such reductions are not too grave, so that the overall convergence rates of the interested field components

Ez;Hx and Hy are still quite close to fourth-order, see Table 8. Thus, numerical results of the Q4DMmethod

in Table 8 justify its quasi-fourth-order accuracy. Meanwhile, it is noted that the Q4DM method performs

well for both cases where the interface is either on some Ez nodes (i.e., cases whose Nx take odd integers) or

not (i.e., cases whose Nx take even integers).

We next study the same 2D problem by considering the 2D HDM method. Following the above dis-

cussions, a maximum value of parameter l is chosen, i.e., l ¼ 8. The numerical results for different Mx ¼ m
are given in Table 9. It is clear that forMx ¼ 1, 2, and 4, the numerically tested convergence rates are almost
identical to the theoretical ones, see also Fig. 17. For Mx ¼ 6 and Mx ¼ 8, it is found that both numerical

accuracy and numerically tested rates for these two cases are exactly identical, except when the limit of
Table 7

The L2 errors in x derivative approximations of the FDTD methods with the Q4DM

ðNx;NyÞ oEz=ox oHy=ox

Error Rate Error Rate

ð50; 41Þ 7:69ð�5Þ 9:92ð�5Þ
ð100; 81Þ 6:37ð�6Þ 3.541 1:72ð�5Þ 2.490

ð200; 161Þ 5:44ð�7Þ 3.524 3:03ð�6Þ 2.489

ð51; 41Þ 2:88ð�5Þ 7:12ð�5Þ
ð101; 81Þ 1:88ð�6Þ 3.936 1:15ð�5Þ 2.635

ð201; 161Þ 1:26ð�7Þ 3.901 1:99ð�6Þ 2.525

Here Mx ¼ 2, and a longer differential kernel is used in y direction with My ¼ 8. Two types of grid resolutions, i.e., Ez nodes being

coincided with the interface x ¼ n (Nx take odd integers) or not (Nx take even integers), are considered.

Table 8

The L2 errors of the FDTD methods with the Q4DM at time t ¼ 1 with Dt ¼ 5:0� 10�4

ðNx;NyÞ Ez Hx Hy

Error Rate Error Rate Error Rate

(50, 41) 2:76ð�5Þ 1:07ð�5Þ 3:21ð�5Þ
(100, 81) 1:93ð�6Þ 3.780 7:44ð�7Þ 3.791 2:16ð�6Þ 3.841

(200, 161) 1:50ð�7Þ 3.656 5:80ð�8Þ 3.653 1:59ð�7Þ 3.732

(51, 41) 2:93ð�5Þ 1:12ð�5Þ 3:10ð�5Þ
(101, 81) 2:30ð�6Þ 3.671 8:80ð�7Þ 3.670 2:34ð�6Þ 3.728

(201, 161) 2:03ð�7Þ 3.499 7:89ð�8Þ 3.479 1:98ð�7Þ 3.558

The rest parameter setting is the same as that in Table 7.



Table 9

The L2 errors of the FDTD methods with the 2D HDM at time t ¼ 1 with Dt ¼ 2:5� 10�4

Mx ðNx;NyÞ Ez Hx Hy

Error Rate Error Rate Error Rate

1 (51, 41) 3:97ð�3Þ 1:53ð�3Þ 4:23ð�3Þ
(101, 81) 1:00ð�3Þ 1.990 3:84ð�4Þ 1.990 1:07ð�3Þ 1.986

(201, 161) 2:51ð�4Þ 1.994 9:63ð�5Þ 1.996 2:68ð�4Þ 1.995

2 (51, 41) 2:25ð�5Þ 8:67ð�6Þ 2:48ð�5Þ
(101, 81) 1:42ð�6Þ 3.985 5:44ð�7Þ 3.993 1:56ð�6Þ 3.990

(201, 161) 8:93ð�8Þ 3.993 3:41ð�8Þ 3.998 9:79ð�8Þ 3.996

4 (51, 41) 2:42ð�9Þ 9:64ð�10Þ 2:60ð�9Þ
(101, 81) 7:05ð�12Þ 8.484 2:67ð�12Þ 8.499 7:73ð�12Þ 8.394

(201, 161) 2:90ð�14Þ 7.924 8:22ð�15Þ 8.341 2:35ð�14Þ 8.303

6 (26, 21) 1:29ð�6Þ 5:60ð�7Þ 1:20ð�6Þ
(51, 41) 1:09ð�9Þ 10.214 4:59ð�10Þ 10.214 1:00ð�9Þ 10.224

(101, 81) 6:00ð�13Þ 10.821 2:52ð�13Þ 10.833 5:57ð�13Þ 10.817

(201, 161) 1:33ð�14Þ 5.499 5:06ð�15Þ 5.636 1:29ð�14Þ 5.430

8 (26, 21) 1:29ð�6Þ 5:62ð�7Þ 1:21ð�6Þ
(51, 41) 1:09ð�9Þ 10.208 4:61ð�10Þ 10.251 1:01ð�9Þ 10.224

(101, 81) 6:00ð�13Þ 10.821 2:52ð�13Þ 10.838 5:56ð�13Þ 10.825

(201, 161) 1:95ð�14Þ 4.940 5:80ð�15Þ 5.441 1:56ð�14Þ 5.159

Here My ¼ 8 is used and the maximal l ¼ 8 is employed for all Mx values.
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Fig. 17. Log–log plots of the L2 errors in Ez at time t ¼ 1 by using the 2D HDM method with l ¼ 8 for different Mx values. Here

Dt ¼ 2:5� 10�4 and My ¼ 8.
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double precision is reached. This suggests that the accuracy of both schemes is limited by that of the 2D

HDM with l ¼ 8. The theoretical order of accuracy of Mx ¼ 6 and Mx ¼ 8 should be, respectively, 12 and

16, which, however, are higher than the numerical convergence rate of the HDM method. Therefore, the

numerically tested order of accuracy for both schemes is about from 10.2 to 10.8 for the present problem.
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Since a maximum l ¼ 8 is employed in the 2D HDM, the order of 10.8 might be the highest that the present

HDM scheme can possibly achieve for this problem.

Similar to the 1D case, we note that in Table 9 when ðNx;NyÞ ¼ ð201; 161Þ, our 12th order HDM
(Mx ¼ 6) could be about 107 times more accurate than our fourth order one. It is interested herein to

compare the efficiency of these two schemes. For simplicity, we focus only on the L2 errors of Ez, since

those of Hx and Hy follow the same pattern. In Table 9, by using Dt ¼ 2:5� 10�4 and

ðNx;NyÞ ¼ ð201; 161Þ, the error of the 4th and 12th order schemes is 8:93ð�8Þ and 1:33ð�14Þ, respectively,
while the CPU time is 6.7 and 8.5 min, respectively. The CPU time is recorded on the same Sun

workstation (Blade 2000) and two schemes are generated by the same code. In an ideal case, it takes

slightly more than 5 mesh refinements in order for the 4th order scheme to reduce the error from

8:93ð�8Þ to 1:33ð�14Þ, and finally mesh size ðNx;NyÞ should be about ð10231; 8185Þ, see Table 10. Ba-
sically, for refinement 1–5, when the mesh size is doubled, the error will be divided by 16 (4th order

scheme, 24 ¼ 16) and CPU time will be multiplied by 4 (2D computation, 22 ¼ 4). The last refinement is

targeted to an error of 1:30ð�14Þ, and thus the CPU time is estimated to be 17416.4, which is about 2048

times of the CPU time used by the 12th order scheme, 8.5 min. Therefore, an efficiency gain factor about

2048 could be achieved by using the 12th order HDM instead of the 4th order one for this particular

problem.

In the following, we will show based on numerical experiments that this efficiency estimate is very

conservative. Conducted on the same machine, numerically tested accuracy and CPU time are reported in
Table 10. It is seen from Table 10 that, for refinements 1–4 the estimated errors are in excellent agreement

with the experimental ones. Moreover, the general pattern of the experimental CPU time also follows our

estimation. Although the experimental CPU time is slightly larger than the estimated one, it increases by a

factor slightly larger than 4, when the mesh is doubled in each dimension. The same CPU pattern has been

observed when different workstations (Sun Blade 1000) are used.

Furthermore, the estimated CPU time should be even larger, if the stability constraint is taken into

account. In the previous estimation, a fixed Dt ¼ 2:5� 10�4 is assumed, while Dt should satisfy the

stability condition (58). In the present case,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minf�lg

p
¼ 1, and qS can be observed from Fig. 16 to be

around 4 for Mx ¼ 2 and l ¼ 8. Thus, we have approximately Dt < 0:7Dx, which has been numerically

validated. Then, it can be easily shown that one has to reduce the Dt to about 1:3� 10�4 for the re-

finement 5, i.e., ðNx;NyÞ ¼ ð6401; 5121Þ, otherwise the scheme will be unstable. Similarly, the time step for

refinement 6 has to be reduced to about Dt ¼ 8:5� 10�5 as the scheme is limited by the stability. As a

consequence, about 2.94 times of the originally estimated CPU time are required for our 4th order

scheme to reach the accuracy attained by the 12th order scheme. Therefore, the efficiency gain factor of

the 12th order scheme over the 4th order scheme could be about 6024, if the stability constraint is taken

into account.
Table 10

Theoretically estimated and experimentally tested CPU time and numerical errors for successive refinements of the 4th order scheme

Refinement ðNx;NyÞ Estimated Tested

Error CPU Error CPU

1 (401, 321) 5:58ð�9Þ 26.6 5:59ð�9Þ 29.7

2 (801, 641) 3:49ð�10Þ 106.6 3:50ð�10Þ 136.8

3 (1601, 1281) 2:18ð�11Þ 426.0 2:19ð�11Þ 752.1

4 (3201, 2561) 1:36ð�12Þ 1704.1 1:34ð�12Þ 3211.2

5 (6401, 5121) 8:52ð�14Þ 6816.6 – –

6 (10231, 8185) 1:30ð�14Þ 17416.4 – –

CPU time in minutes is reported.
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The numerical demonstration of refinements 5 and 6 in Table 10 has not be carried out because their

memory requirement is larger than 2 Gbytes, which is beyond the limit of our workstation. However, it is

straightforward to verify our estimation when a better computer is available.
A comparison of the performance between the Q4DM and the 4th order 2D HDM is in order, as the

accuracy of the former is questionable due to its approximation nature. This can be done by comparing

Tables 8 and 9. It turns out that in fact, the accuracy of the Q4DM is very close to that of the 2D HDM at

the corresponding approximation order. This might be due to the central schemes used in Q4DM which are

in general more accurate than one-sided approximations. Therefore, we believe that Q4DM is also a

successful scheme whose accuracy is compatible with other 4th order schemes in the literature [4,48–51].

It is interesting to consider a high frequency wave study for the present problem to further explore the

numerical performance of the 2D HDM method. The parameters of the problem are chosen as �1 ¼ 1,
�2 ¼ 261

136
, a1 ¼ 15p, a2 ¼ 10p, b ¼ 6p, and x ¼ 2

ffiffiffiffiffi
34

p
p. The numerical results are given in Table 11. For the

short wave problem, we also find that the 2D HDM method with Mx ¼ 6 and Mx ¼ 8 has an identical

convergent rate, which is around 9.7.

We further examine the numerical performance of two proposed schemes by considering another 2D

electromagnetic problem. In this problem, a lossless dielectric with a relative permittivity of �2 is enclosed
by air in x direction, and the media are nonmagnetic and homogeneous along y direction. The computa-

tional domain X ¼ fðx; yÞjjxj6 1; jyj6 1g is enveloped by PEC walls. The permittivity is given as � ¼ �2 if
1
2
6 jxj6 1 and jyj6 1, and � ¼ �1 if jxj6 1

2
and jyj6 1, where �1 ¼ 1 and �1 ¼ 2:25. An exact solution for

time-varying electromagnetic fields can be given as

Ez ¼
sinðx2

2
Þ sinðx1ðxþ 1ÞÞ sinðxyyÞ cosðxtÞ; �16 x < � 1

2
jyj6 1;

� sinðx1

2
Þ sinðx2xÞ sinðxyyÞ cosðxtÞ; � 1

2
6 x6 1

2
jyj6 1;

sinðx2

2
Þ sinðx1ðx� 1ÞÞ sinðxyyÞ cosðxtÞ; 1

2
< x6 1jyj6 1;

8><
>:
Table 11

The L2 errors of the FDTD methods with the 2D HDM at time t ¼ 0:5 with Dt ¼ 1:0� 10�4

Mx ðNx;NyÞ Ez Hx Hy

Error Rate Error Rate Error Rate

1 (51, 41) 1:88ð�1Þ 1:29ð�1Þ 2:79ð�1Þ
(101, 81) 6:44ð�2Þ 1.550 2:56ð�2Þ 2.333 5:58ð�2Þ 2.320

(201, 161) 1:70ð�2Þ 1.922 5:83ð�3Þ 2.132 1:27ð�2Þ 2.136

2 (51, 41) 3:63ð�2Þ 1:39ð�2Þ 3:02ð�2Þ
(101, 81) 2:37ð�3Þ 3.935 8:35ð�4Þ 4.058 1:83ð�3Þ 4.046

(201, 161) 1:52ð�4Þ 3.967 5:29ð�5Þ 3.980 1:16ð�4Þ 3.981

4 (51, 41) 4:45ð�3Þ 2:71ð�3Þ 5:32ð�3Þ
(101, 81) 1:09ð�5Þ 8.675 4:55ð�6Þ 9.217 8:99ð�6Þ 9.210

(201, 161) 3:18ð�8Þ 8.420 1:20ð�8Þ 8.571 2:48ð�8Þ 8.502

6 (51, 41) 4:91ð�3Þ 2:66ð�3Þ 5:15ð�3Þ
(101, 81) 6:12ð�6Þ 9.647 3:30ð�6Þ 9.650 6:48ð�6Þ 9.632

(201, 161) 7:19ð�9Þ 9.732 3:85ð�9Þ 9.745 7:65ð�9Þ 9.727

8 (51, 41) 4:97ð�3Þ 2:67ð�3Þ 5:17ð�3Þ
(101, 81) 6:13ð�6Þ 9.664 3:31ð�6Þ 9.658 6:49ð�6Þ 9.638

(201, 161) 7:22ð�9Þ 9.729 3:86ð�9Þ 9.742 7:67ð�9Þ 9.726

High frequency parameter setting is used. Here My ¼ 8 is used and the maximal l ¼ 8 is employed for all Mx values.
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Hx ¼
� xy

x sinðx2

2
Þ sinðx1ðxþ 1ÞÞ cosðxyyÞ sinðxtÞ; �16 x < � 1

2
jyj6 1;

xy

x sinðx1

2
Þ sinðx2xÞ cosðxyyÞ sinðxtÞ; � 1

2
6 x6 1

2
jyj6 1;

� xy

x sinðx2

2
Þ sinðx1ðx� 1ÞÞ cosðxyyÞ sinðxtÞ; 1

2
< x6 1jyj6 1;

8><
>:
Hy ¼

x1

x sinðx2

2
Þ cosðx1ðxþ 1ÞÞ sinðxyyÞ sinðxtÞ; �16 x < � 1

2
jyj6 1;

� x2

x sinðx1

2
Þ cosðx2xÞ sinðxyyÞ sinðxtÞ; � 1

2
6 x6 1

2
jyj6 1;

x1

x sinðx2

2
Þ cosðx1ðx� 1ÞÞ sinðxyyÞ sinðxtÞ; 1

2
< x6 1jyj6 1;

8><
>:

where x2
1 þ x2

y ¼ �1x2 and x2
2 þ x2

y ¼ �2x2. The value of x can be determined according to the relation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x2 � x2

y

q
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1x2 � x2

y

q
2

0
@

1
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1x2 � x2

y

q
tan

0
@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x2 � x2

y

q
2

1
A:

In the first test case, we choose xy ¼ 2p to satisfy the PEC conditions on y ¼ �1. Correspondingly,

x � 9:07716175885174. An example plot of analytical solutions is shown in Fig. 18.

Numerical results of two proposed schemes for this case are listed in Table 12. Again, the HDM schemes

with both Mx ¼ 6 and Mx ¼ 8 yield almost the same accuracy and convergence rate. It is also noted that
now the HDM method with l ¼ 8 produces a higher order accuracy than in the previous example, i.e.,

about 12th-order. It is also clear that in Table 12, the HDMmethod is much more accurate than the Q4DM

scheme.

We then study two proposed schemes for a high frequency setting. By using xy ¼ 5p, we have

x � 16:81412105455500. The numerical results of this case are given in Table 13. Essentially, the results of

both schemes are similar to those in Table 12. CPU time of two methods is also given in Tables 12 and 13.

The CPU time is smaller than the HDM method. However, if the same accuracy level is required to be

achieved, the 2D HDM is significantly more cost-efficient than the Q4DM. On the other hand, it is noted
that, although the Q4DM method is slightly less accurate, it possesses better applicability for general 2D

electromagnetic structures. This suggests that there exists a tradeoff between the robustness and accuracy

(thus cost-efficiency) for selecting these 2D time-domain approaches. The 2D HDM method can be applied

to quite general electromagnetic problems, and it can always achieve very high accuracy, as shown in Tables
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Fig. 18. Plots of electromagnetic fields along the line y ¼ 1=3 at time t ¼ 0:75.



Table 12

The L2 errors of the FDTD method at time t ¼ 1 with Dt ¼ 2:0� 10�4

Scheme Mx l ðNx;NyÞ Ez Hx Hy

Error Rate Error Rate Error Rate CPU

Q4DM 2 – (21, 21) 1:15ð�4Þ 1:12ð�4Þ 1:86ð�4Þ 6.86

(41, 41) 7:53ð�6Þ 3.932 7:34ð�6Þ 3.937 1:18ð�5Þ 3.973 23.16

HDM 6 8 (21, 21) 1:83ð�6Þ 9:92ð�7Þ 1:50ð�6Þ 11.28

(41, 41) 5:50ð�10Þ 11.697 2:48ð�10Þ 11.967 4:00ð�10Þ 11.868 34.73

8 8 (21, 21) 1:84ð�6Þ 9:98ð�7Þ 1:51ð�6Þ 15.05

(41, 41) 5:50ð�10Þ 11.706 2:48ð�10Þ 11.976 4:00ð�10Þ 11.880 41.56

For all two DM schemes, My ¼ 8 and Mx ¼ m. CPU time in seconds is reported.

Table 13

The L2 errors of the FDTD method at time t ¼ 1 with Dt ¼ 2:0� 10�4

Scheme Mx l ðNx;NyÞ Ez Hx Hy

Error Rate Error Rate Error Rate CPU

Q4DM 2 – (21, 41) 2:25ð�3Þ 8:55ð�4Þ 7:56ð�4Þ 15.62

(41, 81) 1:66ð�4Þ 3.759 6:11ð�5Þ 3.808 4:67ð�5Þ 4.017 56.50

HDM 6 8 (21, 41) 2:10ð�4Þ 2:25ð�4Þ 1:97ð�4Þ 24.18

(41, 81) 5:16ð�8Þ 11.991 4:97ð�8Þ 12.146 4:41ð�8Þ 12.123 75.29

8 8 (21, 41) 2:11ð�4Þ 2:26ð�4Þ 1:97ð�4Þ 31.74

(41, 81) 5:11ð�8Þ 12.015 4:96ð�8Þ 12.157 4:40ð�8Þ 12.129 91.61

High frequency parameter setting is used. For all two DM schemes, My ¼ 12 and Mx ¼ m. CPU time in seconds is reported.
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12 and 13. Therefore, the HDM method well balances the tradeoff between robustness and accuracy, and is

a better time domain approach in terms of both properties.
5. Conclusion

In the present work, the well-known difficulty [4] of constructing Maxwell’s equation solvers that
are of higher order than previous fourth-order embedding finite difference time-domain (FDTD)

methods [4,48–51] at material interfaces has been overcome. A systematic procedure via a series of

novel hierarchical derivative matching (HDM) is proposed to construct numerical schemes that greatly

exceed the convergence rate of the previous fourth-order methods. Our studies start from one-

dimensional (1D) electromagnetic applications. The fundamentals of the derivative matching (DM) are

discussed in detail. An implicit derivative matching (IDM) method is proposed as a general high

accuracy time-domain approach, based on a simple structured or Cartesian grid. To address the po-

tential stability problems arising in numerical studies, comprehensive stability analyses are considered
for time-domain computations and the IDM modeling. A novel HDM is then proposed to achieve

better stability and robustness. Numerical tests are carried out to validate new formulations and

schemes. Extensions of the DM to two-dimensional (2D) electromagnetic problems are studied in

detail. Two new schemes, a quasi-fourth-order derivative matching (Q4DM) scheme and a 2D HDM

method are presented. The rationale, stability, merits, and disadvantages of each method are analyzed

in detail. Such analysis has significantly extended our understanding of availability and limitation of
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high order embedded FDTD methods. Similar to the previous fourth-order embedding FDTD meth-

ods, a single staggered, structured grid is typically employed for the present 2D HDM method.

However, since the central finite difference scheme is utilized in the whole domain, the proposed
schemes reduce to the standard high-order FDTD methods without material interfaces. Several in-

homogeneous interface problems are considered to demonstrate the numerical performances of the two

2D schemes.

It is well known that the direct time-domain electromagnetic computation in inhomogeneous media

exhibits only first order of accuracy, even though a high-order spatial discretization scheme is used [4].

To restore the high accuracy of a high-order spatial approximation scheme, subtle numerical modelings

near material interfaces are indispensable for addressing the loss of regularity of field components

across the interfaces [4]. In computational electromagnetics (CEM), several interesting interface schemes
have been manually constructed [4,39,40,45,46,48–51]. However, the extension of these promising

schemes to arbitrarily high order would be quite empirical and mathematically complicated [4] if is not

impossible. Motivated by a novel explicit DM method presented in [39,40], an IDM method is in-

troduced in the present study. By correctly enforcing the physical jump condition at material interfaces,

the IDM method can be applied to general time-domain approaches, such as the multiresolution time-

domain method and the local spectral time domain method to restore high-order accuracy. The

modeling of the IDM results in local modifications of the differential stencils near the interfaces, similar

to the embedding FDTD schemes [4,45,46,48–51]. Therefore, the IDM method yields an excellent way
to systematically generalize the embedding FDTD scheme to higher orders. Compared with the explicit

DM method in [39,40], the IDM method could be more efficient for long time wave simulations, and

can be applied to more general electromagnetic applications, e.g., it can be used in an implicit time-

stepping scheme or numerical solution of frequency-domain CEM problems. Furthermore, the analysis

of stability issues of the IDM method can be easier than that of the explicit DM, due to the implicit

nature of the IDM. A comprehensive stability analysis of the IDM method is carried out in the present

work. However, a direct IDM modeling is found to be quite difficult in 2D studies, due to the presence

of mixed derivatives. As a result, only a Q4DM scheme is constructed in 2D by using the IDM
approach.

A novel HDM method is also introduced in the present paper. In 1D cases, the HDM method can be

viewed as a good supplement to the IDM method in some sense. In particular, the HDM method is

computationally more efficient and robust than the IDM method for problems requiring a large number of

fictitious points. Thus, it is well suited for large scale electromagnetic problems. The HDM method is also

found to be more stable than the IDM method so that it can be easily applied to various high accuracy

time-domain Maxwell solvers. The importance of the HDM method becomes more significant in 2D

simulations. The 2D HDM is constructed by using high order one-sided approximations and the first two
sets of DM conditions. In 2D cases, the hierarchical modeling is found to be the best approach for the

purpose of designing ultra high order DM schemes for general time-domain Maxwell’s solver. By em-

ploying one-sided approximations, the proposed 2D HDM method can achieve up to 12th order of

accuracy in numerical computations and is based on a simple structured grid. In terms of accuracy, cost-

efficiency, stability and applicability, the HDM method is the best DM method for generating ultra high

order 2D embedding FDTD methods. For 3D real applications, the use of HDM method is expected to be

more promising.

The main purpose of this paper is to introduce the hierarchical DM methods for the purpose of
achieving high-order accuracy in numerical solution of time-domain Maxwell’s equations with material

interfaces in the framework of FDTD. Many important issues have not been touched, although possible

extensions of the present work are briefly discussed all over the text. A number of promising generalizations

of the present work, including 2D TE solvers, 3D solvers, frequency domain solvers, complex-domain

solvers, and curved boundary and interface solvers, are under our consideration.
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