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In this paper, a fourth order augmented matched interface and boundary (AMIB) method 
is proposed for solving a three-dimensional elliptic interface problem which involves a 
smooth material interface inside a cuboid domain. On the boundary of the cuboid domain, 
the fourth order AMIB method can handle different types of boundary conditions, including 
Dirichlet, Neumann, Robin and their mix combinations in fictitious value generation. 
Moreover, zero-padding solutions are introduced so that the fast Fourier transform (FFT) 
algorithm is still valid near the boundary. In dealing with the interior interface, a fourth 
order ray-casting matched interface and boundary (MIB) scheme is proposed, which 
enforces the jump conditions along the normal direction for calculating fictitious values. 
Comparing with the existing MIB scheme, the ray-casting scheme naturally bypasses the 
corner issue and becomes more robust in handling complex geometry. Based on fictitious 
values generated near interface and boundary, the fourth order central difference can 
be corrected at various irregular points including corner points, by introducing Cartesian 
derivative jumps as auxiliary variables. This gives rise to an enlarged linear system, which 
can be efficiently solved by the Schur complement procedure together with the FFT 
inversion of the discrete Laplacian. Extensive numerical experiments have been carried 
to test the proposed ray-casting AMIB method for numerical accuracy, efficiency, and 
robustness in corner treatment. The numerical results demonstrate that the ray-casting 
AMIB scheme not only maintains a fourth order of accuracy in treating various interfaces 
and boundaries for both solutions and solution gradients, but also attains an overall 
efficiency on the order of O (n3 log n) for a n × n × n uniform grid.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

This paper focuses on solving three-dimensional (3D) elliptic interface problems with discontinuous coefficients. We 
consider an elliptic partial difference equation (PDE) in a domain �

−∇ · (β∇u) + κβu = f (x), x ∈ �, (1)

subject to boundary conditions in a generic form on the boundary ∂�,

α�u + β�

∂u

∂n
= g(x), x ∈ ∂�. (2)

* Corresponding author.
E-mail address: szhao@ua.edu (S. Zhao).
https://doi.org/10.1016/j.jcp.2023.111924
0021-9991/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2023.111924
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.111924&domain=pdf
mailto:szhao@ua.edu
https://doi.org/10.1016/j.jcp.2023.111924


Y. Ren and S. Zhao Journal of Computational Physics 477 (2023) 111924
Equation (2) represents three commonly used boundary conditions, i.e., Dirichlet (α� �= 0, β� = 0), Neumann (α� = 0, β� �=
0), and Robin (α� �= 0, β� �= 0). For simplicity, the 3D domain � is assumed to be cuboid. A lower dimensional interface 
� defined by � = �+ ∩ �− divides the computational domain � into disjoint subdomains � = �+ ∪ �− . An illustration 
of subdomains is given in Fig. 1 (a). In Eq. (1), the coefficient κ of the reaction term is a constant. The coefficient β and 
source term f (x) are continuous on each disjoint subdomain, but may be discontinuous across the interface �. Furthermore, 
β is assumed to be a piecewise constant, that is, β = β+ in �+ and β = β− in �− , where β+ and β− are some positive 
constants. Similarly, the discontinuous source term f (x) is denoted as f +(x) and f −(x), respectively, in �+ and �− . Across 
the interface �, two jump conditions are known for the function and its flux in the normal direction

[[u]] := u+ − u− = φ(x), (3)

[[βun]] := β+∇u+ · �n − β−∇u− · �n = ψ(x), (4)

where �n is the outward normal direction of � pointing from �− to �+ , and the superscript stands for the limiting value 
from each side of the interface. Equations (3) and (4) are called as the zeroth and first order jump conditions. Such an 
elliptic interface problem with discontinuous coefficients has wide application in a variety of fields such as fluid dynamics 
[34], material science [27], and biological science [23].

Numerous studies have been devoted to algorithm development and numerical analysis for elliptic interface problems in 
the past several decades. In order to solve the elliptic interface problems numerically, the computational grid can be either 
fitted or unfitted with the interface. Classical finite element method (FEM) [2,5,10,36] can achieve a satisfactory accuracy 
if the interfaces are well fitted by the underlying meshes. However, it may be a costly and nontrivial process to generate 
meshes for interfaces with complicated geometry. Therefore, there is always a practical need to develop systematic ways for 
constructing numerical methods on unfitted meshes. Within the FEM context, this motivates the development of immersed 
finite element (IFE) method [28]. The basic idea of the IFE is modifying the basis functions of the cut-through elements 
based on jump conditions. Similar technique has been applied to the immersed finite volume (IFV) method [42]. There are 
other FEMs developed for elliptic interface problems, such as multiscale finite element method [12], extended finite element 
method [22,29], and so on.

There has been a great deal of effort in developing finite difference methods on unfitted meshes [44,49,33,15,43,14]. 
The key idea is to modify finite difference weights for nodes near the interface, so that jump conditions are approximately 
satisfied. For instance, the immersed boundary method (IBM) introduced by Peskin is known to be a key trigger in this field 
for simulation of flow pattern of blood in the heart [44]. Albeit being typically first order accurate in higher dimensions, 
the IBM is quite flexible, robust and efficient. The immersed interface method (IIM) proposed by LeVeque and Li [33] is the 
first second-order finite difference method, where the Taylor series expansions are used to assign stencil weights. Another 
popular approach is the ghost fluid method (GFM) [15], originally designed to treat contact discontinuities in the inviscid 
Euler equations. In solving elliptic interface problems, the GFM is typically first-order [43] and has been extended to second 
order in [41]. The recovery of flux convergence of the GFM has been studied in [14]. A review of a second order compact 
finite difference method is offered in [9]. In [54,55], a second order accurate matched interface and boundary (MIB) scheme 
has been developed for treating complex interfaces with geometric singularities, in which jump conditions are enforced 
to generate necessary fictitious values for central differences. In [51], the MIB fictitious values have been applied to the 
Galerkin formulation to formulate a second-order accurate FEM for complex interfaces such as protein surfaces. A second-
order generalized finite difference method has been developed in [52] based on Taylor series expansions, which can be 
regarded as a meshless method. Apart from finite element and finite difference methods, other effective algorithms for 
solving elliptic interface problems include virtual node method [3,26], finite volume method [4], and coupling interface 
method [11,47]. We note that the aforementioned methods usually deliver first or second order accuracy.

Despite of a great success achieved in the numerical solution of interface problems, there are still a few remaining 
challenges in the field. One of such challenges is the development of high order (at least third order) interface methods. 
Although high order discretizations are demanded for many real-world problems, e.g. those associated with high frequency 
waves, only a few studies have been conducted in the literature to advance along this direction. A fourth order method 
can be constructed by discretizing high order jump conditions and mixed derivatives in the IIM formulation [38]. By iter-
atively imposing zeroth and first order jump conditions, the MIB method [60,54,55] introduces fictitious points to support 
high order central differences across the interface. Being arbitrarily high-order accuracy in principle, up to 16th order MIB 
scheme has been proposed with straight interface geometry [60], and sixth-order MIB schemes have been demonstrated 
for smooth interfaces in two-dimensional (2D) and three-dimensional (3D) domains [60,54,55]. In [59], a fourth order IIM 
was developed by using zero and first order jump conditions too. By combining IBM with a discontinuous Galerkin spatial 
discretization, a high-order method has been constructed for elliptic problems with discontinuous coefficients and singular 
sources [7]. In [30], the idea of the IIM is combined with a continuous finite element discretization to derive a high order 
finite element method for a class of elliptic problems with jumps in the solution and its flux across smooth interfaces. 
Recently, a sixth order compact finite difference scheme has been constructed in [19] and has been generalized in [20] for 
solving elliptic interface problems with discontinuous and high-contrast coefficients. By embedding the governing PDE into 
local Taylor series expansions, this compact finite difference scheme achieves the fourth order accuracy in solving elliptic 
interface problems. Recently, a fourth-order reproducing kernel method for one-dimensional elliptic interface problems has 
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been introduced in [53]. Besides these elegant interface schemes, there are many attractive high order numerical methods 
introduced in the literature for elliptic boundary value problems over irregular domains, see for example [40,24,21,46].

Besides the accuracy improvement, another challenge concerns the construction of fast algorithms for elliptic interface 
problems. It is worth noting that for elliptic PDE without interfaces, the acceleration of algebraic computations can be 
accomplished by using fast Poisson solvers, which include geometric multigrid with a complexity O (N) and fast Fourier 
transform (FFT) with a complexity O (N log N), where N is the spatial degree of freedom. The multigrid acceleration has been 
successfully applied in several interface algorithms, such as ghost point method [13], piecewise-polynomial interface method 
[8], P1 conforming finite element methods on a semi-uniform grid [32], IFE [31] and IIM [1]. The use of the FFT Poisson 
solver has also gained a great popularity in accelerating algebraic solution of elliptic interface problems [37,50,16,18].

A major advancement in this field is the augmented IIM (AIIM) [37,39], whose formulation consists of two main compo-
nents. First, by introducing auxiliary variables, the Laplacian operator can be approximated by the standard finite difference 
stencil, which results in a symmetric and diagonally dominant matrix for fast Poisson solver. Second, the auxiliary variables 
are solved iteratively either through the Schur complement method [37,39,16,50] or from the previous iterative step [6]. 
For instance, AIIM was originally explored by Li in 1998 for solving elliptic interface problems in the case of a piecewise 
constant β [37], by using the FFT. Since then, the AIIM has found a great success in a wide range of applications [38] and 
has been extended to variable coefficients elliptic interface problems [39]. Recently, a new AIIM has been introduced for 
3D elliptic interface problems with a piecewise constant [56]. In the AIIMs, solution jumps in the normal derivative, i.e., 
[ [un] ], are usually chosen as auxiliary variables. Alternatively, some other AIIMs utilized another type of auxiliary variables, 
i.e., Cartesian derivative jumps [ [ux] ], [ [uxx] ], [ [u y] ] and [ [u yy] ]. For instance, with these auxiliary variables, jump corrected 
Taylor expansions can be obtained near the jumps, giving rise to the construction of an explicit jump immerse interface 
method (EJIIM) [50] and a decomposed immersed interface method (DIIM) [6] for solving interface problems with piecewise 
constant and variable coefficients.

Recently, an augmented matched interface and boundary (AMIB) method has been introduced for two-dimensional (2D) 
elliptic interface problems [18], which is the first known finite difference method that combines fourth order convergence 
with the O (N log N) efficiency. In the AMIB method, finite difference discretization is modified separately for interface and 
boundary. The classical MIB scheme [60] is employed to treat curved interfaces up to fourth order accuracy. On boundaries 
of a cuboid domain, the MIB scheme [57,17] can achieve arbitrarily high order in handling the Dirichlet, Neumann, and 
Robin boundary conditions and their mixed combination. By using the augmented formulation introduced in the first AMIB 
method [16], the Cartesian derivative jumps are employed as auxiliary variables and are reconstructed via fictitious values 
at both interfaces and boundaries. In the Schur complement solution of the augmented system, the FFT algorithm can be 
applied to efficiently invert the discrete Laplacian. Consequently, the AMIB scheme [18] can not only provide fourth order 
accurate approximation to solution and its gradient, but also produces an overall complexity of O (N log N).

The goal of this paper is to develop a fourth order AMIB method with the FFT acceleration for solving three-dimensional 
(3D) elliptic interface problems. The new AMIB method is not a simple generalization of the previous AMIB method [16,18]
to 3D. Instead, two new developments will be carried out.

First, a novel ray-casting MIB scheme is proposed for solving interface problems in 2D and 3D. In the classical MIB 
scheme for 2D interface treatment, a tangential derivative jump condition will be derived first [60]. Then the tangential 
jump condition and the zeroth and first order jump conditions will be decomposed into Cartesian directions, e.g. x and 
y directions in 2D. These Cartesian conditions will be discretized repeatedly to generate necessary fictitious values across 
the interface. Such Cartesian MIB scheme has been constructed in 3D [55], and its second order version has found a great 
success in real applications [23]. Motivated by the ray-casting MIB for solving elliptic boundary value problems over irregular 
domains [58,46], in the proposed ray-casting MIB scheme, only zeroth and first order jump conditions will be employed in 
fictitious value generation in a one-dimensional (1D) manner along the normal direction. This is considerably simpler than 
the Cartesian MIB scheme [60,54,55], for which jump condition discretization involves all three Cartesian directions in 3D. 
Moreover, because the normal direction makes it possible to reach more grid points inside/outside the interface, compared 
to the Cartesian directions, the ray-casting MIB scheme becomes more robust in handling complex geometry.

Second, the augmented formulation of the AMIB scheme [16,18] will be further improved. In particular, in the approxi-
mation of auxiliary variables, i.e., Cartesian derivative jumps, a rigorous corner treatment will be conducted, so that the new 
AMIB scheme can accommodate more complicated geometries. A similarly corner treatment has been considered in [35] for 
solving parabolic PDEs over irregular domains. The present study will extend the corner treatment to interface problems, 
i.e., considering possible corners in both �− and �+ .

Several nice features of the original AMIB scheme [16,18] will be maintained. For instance, at the boundary ∂�, the same 
fourth order AMIB method [17] will be utilized for imposing Dirichlet, Neumann, Robin or any combination of boundary 
conditions. The augmented scheme [16] is able to incorporate both interior interface and exterior boundary treatments 
into one formulation. This gives rise to a fourth order finite difference method with the FFT efficiency for solving 3D 
elliptic interface problems with various boundary conditions. Moreover, like the 2D AMIB scheme [18], a fourth order of 
convergence can be fulfilled in the approximation of solution gradients or fluxes for 3D elliptic interface problems, by using 
the calculated numerical solutions and fictitious values. The numerical order of gradient approximation is usually one order 
lower than that of solution itself. This motivated many studies in the literature for gradient recovery, see for example 
[39,48,14,25]. The AMIB method can provide accurate gradient approximation without additional recovery.
3
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The rest of the paper is organized as follows. In Section 2, a new ray-casting MIB scheme is proposed to solve inter-
face problems in 2D and 3D. The boundary treatment will be described. Then a uniform augmented MIB system will be 
formulated with fast computation. Section 3 is dedicated to the numerical results to demonstrate the performance of the 
proposed algorithm. A conclusion and future plan will be given at the end of this paper.

2. Theory and algorithm

To introduce the proposed AMIB scheme, we first transform the original PDE (1) by dividing the coefficient β on both 
hand sides of the equation

	u − κu = − f (x)

β
, x ∈ (�− ∪ �+) \ �. (5)

We will solve (5) subject to the boundary condition (2) and interface jump conditions (3) and (4), which actually gives the 
solution of the original elliptic interface problem.

We concern ourselves on a cuboid domain � = [a, b] × [c, d] × [e, f ], which is separated as � = �+ ∪ �− by a closed 
interface �, as shown in Fig. 1 (a). A uniform grid spacing h is employed to partition the domain � into nx , ny and nz equally 
spaced intervals in the x-, y- and z-directions respectively such that the nx = (b − a)/h, ny = (d − c)/h and nz = ( f − e)/h. 
The grid coordinates in 3D are therefore defined as

xi = a + ih, y j = c + jh, zk = e + kh, i = 0, · · · ,nx, j = 0, · · · ,ny, k = 0, · · · ,nz. (6)

The details of the proposed AMIB method will be discussed in subsection 2.1 - 2.4. Similar to the 2D AMIB scheme [18], 
we will first introduce an immersed boundary problem so that high order approximation and FFT inversion can be carried 
out near boundaries. Then, a new ray-casting MIB scheme is proposed to generate fictitious values near the interface, while 
the same MIB boundary scheme [17] is applied at boundaries. The corrections to fourth order finite difference are considered 
next, and particular attention will be paid for corner treatments. Finally, the augmented formulation and FFT inversion [16]
will be established.

2.1. Immersed boundary formulation

In the proposed AMIB method, the standard fourth order central difference will be utilized for approximating the second 
order partial derivatives with a truncation error O (h4), e.g.,

uxx(xi, y j, zk) ≈ 1

h2
[− 1

12
u(xi−2, y j, zk) + 4

3
u(xi−1, y j, zk) − 5

2
u(xi, y j, zk)

+ 4

3
u(xi+1, y j, zk) − 1

12
u(xi+2, y j, zk)] (7)

Near the boundary ∂�, boundary conditions need be imposed to modify finite difference weights. Moreover, in order apply 
the FFT Poisson solver throughout the domain for central difference, an immersed boundary formulation has been proposed 
in [17], by adding several layers of zero-padding solutions beyond ∂�. Then, over the boundary of the enlarged domain, the 
anti-symmetric property is naturally satisfied so that the FFT fast inversion is feasible. Similarly, we will first convert the 
present 3D boundary ∂� into an immersed boundary.

Now we take the fourth order central difference scheme in 3D for a demonstration. As shown in Fig. 1, the original 
problem is recasted into an immersed boundary problem. To be more clear, the original cuboid domain � is embedded in 
a larger cuboid region D such that the extended domain is equipped with an external subdomain �e with a width being 
2h for x-, y-, and z-direction to support the fourth order central difference. As a consequence, the grid coordinates are 
redefined as below in the domain D

xi = a + (i − 2)h, y j = c + ( j − 2)h, zk = e + (k − 2)h,

i = 0, · · · ,nx + 4, j = 0, · · · ,ny + 4, k = 0, · · · ,nz + 4 (8)

where nx, ny, nz are identically defined as above.
From now on, the original interface � is redefined as �1. We denote the extended subdomain as �e , and separate the 

whole domain D = [a − 2h, b + 2h] × [c − 2h, d + 2h] × [e − 2h, f + 2h] as D = �− ∪ �+ ∪ �e by two closed interfaces 
�1 = �− ∩ �+ and �2 = �+ ∩ �e . Recall that the original solution u and the source term f can be piecewisely defined, i.e., 
we have u− and f − in �− and u+ and f + in �+ . In the extended subdomain �e , we simply have ue = 0 and f e = 0. With 
these notations, the immersed boundary problem can be modeled as

	u − κu = − f (x)
, x ∈ D \ (�1 ∪ �2), (9)
β

4
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Fig. 1. A demonstration of the original and corresponding immersed boundary problems. In the enlarged 3D domain D , �1 stands for the original interface 
�, and �2 is composed of six sides of the original cuboid domain �, i.e., �i

2 for i = 1, · · · , 6.

with source term being

f =
⎧⎨
⎩

f −, x ∈ �−,

f +, x ∈ �+,

f e, x ∈ �e,

and coefficient defined as

β =
⎧⎨
⎩

β−, x ∈ �−,

β+, x ∈ �+,

1, x ∈ �e.

The new immersed boundary problem is subject to the original interface conditions (3) - (4) on �1 = � and the boundary 
condition (2) on the immersed interface �2 = ∂�. In the case of Dirichlet boundary conditions, Eq. (2) can be converted to 
additional interface condition (10) on �2:

[[u]] :=ue − u+ = g(x), (10)

because ue = 0 in the zero-padding zone �e . On the extended boundary ∂ D , a trivial boundary condition can be assumed 
u = ue = 0. Moreover, the ghost values outside ∂ D can be obviously assumed to be zero. Consequently, the anti-symmetry 
property in u is naturally satisfied across ∂ D , so that the FFT inversion can be applied over D [17].

In our computation, one constraint we require is that the shortest distance between �1 and �2 must be 4h in each 
Cartesian direction to allow for fourth order of convergence. Otherwise, the MIB treatments for �1 and �2 might affect each 
other.

2.2. Fictitious values generation

To compensate the solution discontinuity near �1 and �2, special numerical treatments are needed. In the MIB method, 
this is accomplished through introducing necessary irregular points and fictitious values [60]. Briefly speaking, while the 
standard fourth order central difference Eq. (7) could be employed for approximation at regular points, modification is 
required for irregular points where finite difference is not well-defined due to the discontinuous solution across �1 and �2. 
For this purpose, we first define irregular points near �1 and �2 in the fourth order case below.

Firstly, we define irregular point near �1. Assume that the interface �1 is governed by the zero level set �1 =
{(x, y, z), ϕ(x, y, z) = 0}, with ϕ(x, y, z) < 0 in �− and ϕ(x, y, z) > 0 in �+ ∪ �e . Define minimal and maximal level set 
values at a node (xi, y j, zk) over a set of values
5



Y. Ren and S. Zhao Journal of Computational Physics 477 (2023) 111924
Fig. 2. In the ray-casting MIB scheme, the desired fictitious value at M+
1 = (xi , y j , zk) (green filled circle) is generated along the normal line passing M+

1
(dashed line), involving 8 auxiliary points M−

l and M+
l for l = 1, 2, 3, 4 (red squares and green filled circle). Except for M+

1 , each auxiliary point is an 
intersection point of the normal line with a nearby xy plane. Moreover, this auxiliary point will be interpolated within certain region on the xy plane. 
Inside �1, the interpolation is conducted within �− on the xy plane z = zl , giving rise to yellow disks �−

l for l = k −4, k −3, k −2, k −1. Without restriction 
outside �1, �+

l is taken as a rectangular (yellow) region on the xy plane z = zl for l = k + 1, k + 2, k + 3. (For interpretation of the colors in the figures, the 
reader is referred to the web version of this article.)

{ϕi−2, j,k,ϕi−1, j,k,ϕi, j,k,ϕi+1, j,k,ϕi+2, j,k,ϕi, j−2,k,ϕi, j−1,k,ϕi, j+1,k,ϕi, j+2,k,ϕi, j,k−2,ϕi, j,k−1,ϕi, j,k+1,ϕi, j,k+2}
(11)

as ϕmin
i jk and ϕmax

i jk . When ϕmin
i jk ϕmax

i jk < 0, we call the grid node (xi, y j, zk) an irregular point, otherwise regular point. In 
particular, consider an irregular point (xi, y j, zk) near �1 and within �− . We have ϕi, j,k < 0 and at least one point in the set 
of Eq. (11) has positive value, say ϕI, J ,K > 0. To approximate the Laplacian �u at (xi, y j, zk), the use of the function value 
u(xI , y J , zK ) in the fourth order central difference (7) will suffer an accuracy reduction, because (xI , y J , zK ) is from the 
other side of the interface. In the MIB method, a fictitious value will be assumed at (xI , y J , zK ), which can be regarded as 
the extension of the solution from the �− side, but is determined rigorously according to jump conditions [60]. Therefore, 
in order to recover fourth order central difference approximation at all irregular points near �1, four layers of fictitious 
points surrounding �1 will be needed along each Cartesian grid line. Referring to Fig. 1 (b), four fictitious points near �1
are highlighted along y-direction grid line, two inside and two outside. Other fictitious points along x direction or z direction 
can be generated in a similar fashion.

Secondly, irregular points near interface �2 can be defined as the grid nodes on �2, two layers of grid nodes outside 
�2, and the nearest one layer of grid points inside �2. Similarly, four layers of fictitious values can be assumed near 
�2, two inside and two outside. However, the two layers inside are actually not needed in our computation, because the 
corresponding fictitious values trivially equal to zero for the zero-padding solution ue . Thus, only two fictitious points 
outside �2 are highlighted along y-direction grid line in Fig. 1 (b). These two layers of fictitious values will be determined 
according to boundary conditions [57].

2.2.1. Fictitious values near interface �1
In the present study, a novel ray-casting MIB scheme will be developed for handling the curved interface �1 in 3D. The 

new scheme consists of two main stages. First, the jump conditions (3) and (4) are imposed along the normal direction to 
determine necessary fictitious values. Second, the involved points will be interpolated on 2D Cartesian planes so that the 
fictitious values can be expressed by means of function values of u on a set of grid nodes. The ray-casting MIB scheme can 
be similarly formulated for treating 2D interfaces.

In the first stage of the ray-casting MIB scheme, we determine the fictitious values around �1. A particular case of the 
ray-casting MIB scheme is illustrated in Fig. 2. Consider an irregular point (xi, y j, zk−1) in �− . Assume that the fourth 
order finite difference approximation at (xi, y j, zk−1) along the z direction needs two fictitious values at (xi , y j, zk) and 
(xi, y j, zk+1) in �+ . Here, details will be provided on how to determine the first layer fictitious value outside �1, i.e., at 
6
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M+
1 = (xi, y j, zk) as shown in Fig. 2. The second layer fictitious value outside �1, e.g. at (xi, y j, zk+1), and two layers of 

fictitious values inside �1 can be similarly generated.
For the fictitious node M+

1 , one first finds a normal line of �1 that passes M+
1 = (xi, y j, zk), similar to the immersed 

interface method (IIM) [38]. For a smooth interface �1, such a normal direction can always be found, and we assume the 
normal line intersects �1 at an interface point P�1 . Along the inward normal direction, the normal line or auxiliary line will 
first meet a 2D Cartesian grid plane, which could be xy plane, xz plane, or yz plane. Without the loss of generality, let us 
assume that the normal line first meets a xy plane z = zk−1 and denote the intersection point as M−

1 , see Fig. 2. Extending 
the auxiliary line in both directions, it will meet other xy planes, yielding three auxiliary nodes M+

l for l = 2, 3, 4 on three 
horizontal xy plane z = zk+l for l = 1, 2, 3 positioned in the same side of �1 as M+

1 , i.e., �+ . Similarly four auxiliary nodes 
M−

l for l = 1, 2, 3, 4 on four horizontal xy plane z = zk−l for l = 1, 2, 3, 4 are positioned in the other side of �1, i.e., �− .
We next discretize the zeroth and first jump conditions (3) and (4) at P�1 by using eight auxiliary points {M−

4 , M−
3 , M−

2 ,

M−
1 , M+

1 , M+
2 , M+

3 , M+
4 }. With two conditions, this discretization allows us to determine two unknowns, i.e., two fictitious 

values at M+
1 and M−

1 , which will be denoted as ûM+
1

= ûi, j,k and ûM−
1

, respectively. Note that ûi, j,k is the fictitious value 
needed in the fourth order central difference approximation at (xi, y j, zk−1). The additional fictitious value ûM−

1
is not 

used in this study, but may be employed in future studies to accommodate more complex geometries. Denote the function 
values at M+

l and M−
l as uM+

l
and uM−

l
for l = 1, 2, · · · , 4. Each limiting value in the interface conditions (3) and (4) is 

approximated by using four function values from the same side and one fictitious value from the other side. Neglecting the 
truncation errors on the order of O (h4), this yields two algebraic equations

w+
0,1ûM−

1
+

4∑
l=1

w+
0,l+1uM+

l
− (w−

0,1ûi, j,k +
4∑

l=1

w−
0,l+1uM−

l
) = φ(P�1), (12)

β+(w+
1,1ûM−

1
+

4∑
l=1

w+
1,l+1uM+

l
) − β−(w−

1,1ûi, j,k +
4∑

l=1

w−
1,l+1uM−

l
) = ψ(P�1), (13)

where w+
m,l+1 and w−

m,l+1 for m = 0, 1 and l = 0, 1, · · · , 4 represent the finite difference weights. Here the subscript m
stands for zeroth (m = 0) or first order derivative (m = 1) approximation at the interface point P�1 . The superscripts −
and + in w signify the �− and �+ domain separated by the interface �1. Therefore, by solving two equations (12) and 
(13) algebraically, one obtains two fictitious values ûi, j,k and ûM−

1
by means of a linear combination of uM+

l
and uM−

l
for 

l = 1, 2, · · · , 4, and two jump values at the interface point P�1 , i.e., φ(P�1) and ψ(P�1 ).
In the second stage of the ray-casting MIB scheme, the seven auxiliary points, M−

l for l = 1, 2, 3, 4 and M+
l for l = 2, 3, 4, 

have to be interpolated by using nearby grid node values, because these auxiliary points are usually off-grid. Note that the 
function value at the auxiliary point M+

1 is on-grid, i.e., uM+
1

= ui, j,k . To guarantee the accuracy, each of the seven auxiliary 
points will be interpolated by using grid nodes from the same side of the interface �1. Moreover, such grid nodes are also 
on the same 2D Cartesian plane, i.e., xy plane in the present discussion. In this manner, seven 2D auxiliary regions are 
identified as shown in Fig. 2.

We next consider the interpolation of an auxiliary point within the corresponding 2D auxiliary region. A set of appro-
priate grid nodes in the auxiliary region will be chosen so that the interpolation error is on the order of O (h4). Without 
the loss of generality, let us take for instance the interpolation of the auxiliary point M−

1 restricted in a 2D auxiliary region 
�−

k−1 on the horizontal plane z = zk−1. To better illustrate the interpolation process, a 2D plot is given in Fig. 3. Here the 
auxiliary point M−

1 is assumed to have coordinate values (xo, yo, zk−1) for xm−1 < xo < xm and yl+1 < yo < yl+2. The 2D 
interpolation will be carried out through two 1D interpolation steps. In the first step, we need to choose an interpolation 
line from x = xo or y = yo , based on the coordinate values xo and yo . For the case shown in Fig. 3, the line y = yo is chosen. 
Then five interpolation points along this interpolation line, which are closest to M−

1 while within �−
k−1, are selected, i.e., 

(xm−1, yo, zk−1), (xm, yo, zk−1), (xm+1, yo, zk−1), (xm+2, yo, zk−1), (xm+3, yo, zk−1) in Fig. 3. Next, each of these five interpo-
lation point will be interpolated or extrapolated by five closest grid nodes along y direction within �−

k−1. This totally selects 
25 grid nodes to interpolate M−

1 within �−
k−1, as shown in Fig. 3. The interpolation represents uM−

1
by means of 25 function 

values uI, J ,K at 25 grid nodes. The interpolation of other auxiliary values can be conducted similarly.
With the seven auxiliary function values approximated properly, the formulation of fictitious value ûi, j,k can finally take 

a general form as

ûi, j,k =
∑

(xI ,y J ,zK )∈Si, j,k

W I, J ,K uI, J ,K + W0φ(P�1) + W1ψ(P�1), (14)

where Si, j,k represents the set of grid nodes selected in the ray-casting MIB scheme, and W I, J ,K is the weight associated 
with each point in the set. In particular, this set involves 25 grid nodes for each of seven auxiliary points, as well as M+

1 =
(xi, y j, zk). Thus, in total, the fictitious value ûi, j,k is a linear combination of 176 function values on 176 Cartesian nodes, 
and two known jump values φ(P�1 ) and ψ(P�1 ). This fictitious value representation is guaranteed to have an accuracy on 
7
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Fig. 3. The interpolation of an auxiliary point M−
1 within the 2D auxiliary region �−

k−1. The 2D interpolation is carried out through two 1D steps. First, 
M−

1 (red square) is interpolated by using five interpolation points (green squares) at (xm−1, yo, zk−1), (xm, yo, zk−1), (xm+1, yo, zk−1), (xm+2, yo, zk−1), and 
(xm+3, yo, zk−1). Second, each interpolation point is interpolated in y direction by five grid nodes (black filled circles).

the order of O (h4). In a similar manner, one can generate all necessary fictitious values around �1, two layers inside and 
two layers outside. We note that the generation processes of all fictitious values are decoupled or independent.

The present ray-casting MIB scheme is formulated such that the 176 Cartesian nodes in Si, j,k are chosen to minimize the 
involved interpolation and derivative approximation errors, while maintaining the O (h4) requirement. Some details about 
the selection of Si, j,k for different interface geometries are discussed below.

1. For each normal line or auxiliary line, there are three scenarios depending on whether the auxiliary line intersects with 
the xy plane or xz plane or yz plane first. Consider the vector �v = −−−−→

P�1 M+
1 , and normalize it to calculate its x, y, and z

components, i.e., �v
|�v| = (dx, dy, dz)

T . Computationally, these three scenarios can be identified by examining the maximal 
value among |dx|, |dy|, and |dz|. For example, if |dz| is the largest one, the auxiliary line will first meet the xy plane, 
as shown in Fig. 2. Alternatively, the auxiliary line first meets the yz plane and xz plane, respectively, if |dx| and |dy | is 
the largest value.

2. The auxiliary regions �−
l and �+

l for l = 1, 2, 3, 4 are selected adaptively in the ray-casting MIB algorithm. As shown 
in Fig. 3, 25 grid nodes will be chosen from each auxiliary region to interpolate the auxiliary point. However, for 
complex geometries, there are situations in which no enough grid nodes are available for interpolating the auxiliary 
point within the auxiliary region. For the geometry shown in Fig. 2, this could happen for certain �−

l in �− . In such 
a case, the auxiliary point M−

l shall be skipped. Then, a new auxiliary point will be considered, which is taken as the 
intersection point of the normal line with the next xy plane below z = zk−4, and the corresponding auxiliary region 
will be determined. Such a down shifting process is allowed to be conducted at most twice to guarantee that there 
are enough nodes available at each auxiliary region for interpolating the auxiliary points. In order to deal with more 
complicated geometry, we plan to explore other strategies in the future, such as conducting the down shifting for more 
layers, or conditionally accepting an auxiliary region with less than 25 nodes for interpolating the auxiliary point.

3. The adaptive procedure could also be considered in calculating the second layer of fictitious values. For example, image 
in Fig. 2 that there is a fictitious point (xi, y j, zk+1) in �+ . The closest auxiliary point generated in the inward normal 
direction could be still in �+ . Since the corresponding auxiliary region can be created for this auxiliary point, it will 
not be skipped. Only another two auxiliary points in �+ are required above (xi, y j, zk+1). For auxiliary points in �− , 
an adaptive down shifting process shall be carried out to seek for four auxiliary regions in �− .

4. For the interpolation in the auxiliary region, the order of two 1D interpolation steps should be decided. In this work, 
the decision depends on the location of the auxiliary point, e.g. (xo, yo, zk−1) in Fig. 3. In particular, if |xo| ≥ |yo|, the 
interpolation of M−

1 is carried out along x direction first. Otherwise, M−
1 is interpolated along y direction first.

5. Unlike the previous ray-casting MIB scheme for solving elliptic boundary value problems over irregular domains [46], 
the present ray-casting MIB scheme is free of an accuracy reduction issue. In [46], the MIB accuracy has been found 
to be seriously reduced in treating Dirichlet boundary conditions, if there is an auxiliary point that is very close to the 
boundary. Following the idea of Gibou et al. [24], all auxiliary nodes are shifted one position to restore the accuracy in 
[46]. Such an accuracy reduction is associated with the interpolation only, because the discretization of Neumann and 
8
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Fig. 4. The MIB boundary treatment along a y grid line with x = xi and z = zk at y = d. Two fictitious values û0 and û1 will be represented by using four 
function values u2, u3, u4, and u5, where u2 is located on the boundary �2

2.

Robin conditions is free of this issue. Similarly, for the present interface problem, the discretization of jump conditions 
involves derivative approximations, not just interpolation. Thus, such kind of accuracy reduction has not been observed 
in the present ray-casting MIB scheme.

A comparison of the proposed ray-casting MIB scheme and the existing MIB scheme [60,54,55] is in order. The ray-
casting MIB scheme keeps some nice features of the classical MIB scheme. First, both MIB schemes attain the fourth order 
of accuracy in treating curved interfaces. Second, both schemes only use zeroth and first order jump conditions for fictitious 
value generation, and no higher order jump conditions are needed. It is known that the higher order jump conditions 
include higher order derivatives and mix derivatives, whose numerical discretization is not trivial. Finally, both MIB interface 
treatments are independent of the governing PDE, so that they can be applied to solve various PDE interface problems, 
including elliptic, hyperbolic and parabolic types.

The ray-casting MIB scheme is different from the Cartesian MIB scheme [60,54,55] in several aspects. First, two jump 
conditions are implemented along the normal direction in the ray-casting scheme. In the original MIB scheme, two jump 
conditions together with further derived tangential jump conditions will be decomposed into x, y, and z directions for 
finite difference approximations. The present 1D implementation is much easier than the simultaneous 3D approximations 
in [54,55]. Second, because the normal direction makes it possible to reach more grid points inside/outside the interface, 
compared to the Cartesian directions, the ray-casting MIB scheme becomes more robust in handling complex geometry. 
Third, in the classical fourth order MIB scheme, four fictitious values along one Cartesian direction (two inside and two 
outside the interface) are usually generated together. This often runs into a corner problem, i.e., the Cartesian line will cut 
the interface twice within the range of four fictitious values [54,55]. With a sufficiently high grid resolution, the corner 
problem will not occur in the normal direction or in the ray-casting MIB scheme. In summary, the proposed ray-casting MIB 
scheme is simpler and more robust than the classical MIB scheme for PDE interface problems.

2.2.2. Fictitious values near interface �2
For the interface �2, the MIB boundary closure approach introduced in [57] will be simply applied to generate fictitious 

values. The MIB formulation for arbitrarily high order central difference is considered for various boundary conditions in 
[57]. Recall that for the present fourth order central difference, two layers of fictitious values are required outside �2. Here, 
the fictitious value generation near to �2

2 of �2 is demonstrated in Fig. 1, while one can follow the same arguments to 
generate fictitious values for other sides of �2. The MIB boundary scheme [57] can handle Dirichlet, Robin, and Neumann 
boundary conditions, and their mixed combination.

On the boundary y = d, we first consider a Robin boundary condition

αu + ∂u

∂ y
= g(x,d, z). (15)

Take for instance the formulation of fictitious values right to �2
2 along x = xi and z = zk . Let us drop the function dependence 

on x and z and reduce the derivation into a 1D problem as shown in Fig. 4. Utilizing the fictitious values û1 and true function 
values u2, u3, u4, u5 along the y grid line, one can discretize the condition (15) as

αu2 + C (1)
1 û1 +

5∑
m=2

C (1)
m um = g(xi, zk), (16)
9
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where C (1)
m are finite difference weights in approximating first order derivative at y = d by using a stencil {û1, u2, u3, u4, u5}. 

Solving Eq. (16), one obtains the fictitious value û1. Note that this procedure works for a Neumann boundary condition by 
taking α = 0 in Eq. (15).

For a Dirichlet boundary condition u(x, d, z) = g(x, d, z) imposed at �2
2, it will be combined with the equation −β+	u +

κβ+u = f (x, y, z) in �+ . This gives rise to another condition:

u yy(x,d, z) = − f (x,d, z)

β+ − gxx(x,d, z) − gzz(x,d, z) + κ g(x,d, z)
�= G(x, z). (17)

By discretizing u yy in the same manner, one can also obtain the fictitious value û1.
The fictitious value û1 calculated from Dirichlet, Neumann, or Robin boundary condition can be rewritten as:

û1 =
5∑

m=2

Wmum + W0G(xi, zk) + W1 g(xi, zk). (18)

To generate more fictitious values to support high order central differences, the MIB boundary scheme [57] will iteratively 
enforce the boundary conditions. In particular, by taking û1 as a known value, the discretization of boundary conditions by 
using a stencil {û0, ̂u1, u2, u3, u4, u5} determines another fictitious value û0. Referring to [57], û0 can also be represented in 
a form like Eq. (18). Other fictitious values outside �2 from x direction or z direction can be formulated similarly.

2.3. Fourth order central difference discretization

In the present work, an augmented MIB (AMIB) method will be constructed for solving 3D elliptic interface problems, 
which is generalized from the recently developed AMIB scheme for various PDE interface and boundary value problems 
[16,18,17,46,35]. Different from the classical MIB methods [60,57], the fictitious values calculated above will not be directly 
used to modify the Laplacian approximation at irregular points. Instead, in the augmented formulation, the standard fourth 
order central difference will be used at irregular points near �1 and �2, subject to certain corrections by means of Cartesian 
derivative jumps [u(k)] at various intersection points. Then, the derivative jumps [u(k)] will be reconstructed with aid of 
fictitious values near �1 and �2. More details are provided in the following subsections.

2.3.1. Correcting fourth order central difference
Taking advantage that the Laplacian approximation can be carried out in a tensor product manner, one can discuss the 

ideas of the proposed AMIB method by taking one direction into account first. For simplicity, we may ignore the function 
dependence on x and z at the moment, by denoting u = u(y). The following theorem provides the fourth order corrected 
finite difference for a function u(y) across an interface.

Theorem 1 (Corrected fourth order finite differences). Let y j ≤ α ≤ y j+1, h− = y j − α, and h+ = y j+1 − α. Suppose u ∈ C6[y j −
2h, α) 

⋂
C6(α, y j+1 + 2h], with derivative extending continuously up to the interface y = α. Then the following approximations hold 

to O (h4) when K = 5:

u yy(y j−1) ≈ 1

h2
[− 1

12
u(y j−3) + 4

3
u(y j−2) − 5

2
u(y j−1) + 4

3
u(y j) − 1

12
u(y j+1)] + 1

12h2

K∑
k=0

(h+)k

k! [u(k)],

u yy(y j) ≈ 1

h2
[− 1

12
u(y j−2) + 4

3
u(y j−1) − 5

2
u(y j) + 4

3
u(y j+1) − 1

12
u(y j+2)]

− 4

3h2

K∑
k=0

(h+)k

k! [u(k)] + 1

12h2

K∑
k=0

(h + h+)k

k! [u(k)],

u yy(y j+1) ≈ 1

h2
[− 1

12
u(y j−1) + 4

3
u(y j) − 5

2
u(y j+1) + 4

3
u(y j+2) − 1

12
u(y j+3)]

+ 4

3h2

K∑
k=0

(h−)k

k! [u(k)] − 1

12h2

K∑
k=0

(h− − h)k

k! [u(k)],

u yy(y j+2) ≈ 1

h2
[− 1

12
u(y j) + 4

3
u(y j+1) − 5

2
u(y j+2) + 4

3
u(y j+3) − 1

12
u(y j+4)] − 1

12h2

K∑
k=0

(h−)k

k! [u(k)],

where [u(k)] = [u(k)]α = lim+ u(k)(y) − lim− u(k)(y).

y→α y→α

10



Y. Ren and S. Zhao Journal of Computational Physics 477 (2023) 111924
Fig. 5. An illustration of the fourth order numerical approximation to Cartesian derivative jumps at �1 and �2. In both charts, crosses stand for the interface 
point, while filled circles represent real function values and empty circles denote fictitious values. The left chart is a general case for jump values at y = α
for �1, while the right one is at boundary point y = d for the side �2

2 of �2.

Bearing the above y-oriented corrected difference in mind, we can easily generalize the idea into 3D by combining cor-
rected differences from different directions to approximate the Laplacian operator dimension by dimension. In all corrected 
finite differences, the standard central difference is preserved and the correction terms contain jump quantities at interface 
points. When away from interfaces, the correction terms vanish for regular points, so that the corrected finite difference 
reduces to the standard central difference. Thus, the corrected finite difference can be applied to all grid nodes. In order to 
achieve fourth order accuracy, K needs to be at least 5 for a fourth order truncation error O (h4). However, in practice, one 
can retain fourth order accuracy if we only take K = 4 with a third order local truncation error O (h3) at irregular points 
for approximation to Laplacian, because global fourth order accuracy can still be realized.

The corrected fourth order finite differences will be applied to handle the interior interface �1 and the exterior interface 
�2. To be more specific, for �1, a general case is usually taken, in which one comes across an interface point α positioned 
between two of its adjacent grid points, y j and y j+1 with h− = y j − α, and h+ = y j+1 − α. For �2, Theorem 1 is also 
applicable when each side of �2 aligns with a grid line and the interface point α coincides with a grid point. This can be 
realized by defining h− = −h and h+ = 0 for the lower side �1

2, the left side �4
2, and the front side �5

2, and h− = 0 and 
h+ = h for the upper side �3

2, the right side �2
2, and the back side �6

2.

2.3.2. Cartesian jump values reconstruction
The fourth order central differences are corrected at various interface points, which are intersection points between a 

Cartesian grid line and �1 or �2. At such interface point, the Cartesian derivative jumps usually cannot be obtained from 
the given PDE problem. We next consider how to numerically approximate Cartesian derivative jumps at α, i.e., [u(m)]α
(m = 0, 1, · · · , 4) with the aid of MIB fictitious values near �1 and �2 calculated above.

Instead of a numerical approximation, the zeroth derivative jump is the function jump across the interface, which can be 
explicitly obtained by the analytical jump conditions Eq. (3) or (10). In order to reconstruct other jump values for m up to 
4 in the corrected difference, two Lagrange polynomials of degree four can be built to give limiting derivatives, resulting in 
the approximated jumps up to fourth order derivative. Take a jump reconstruction along y-direction for an illustration here. 
Two layers of fictitious values are available on each side of the interface �1 and outside �2, see Fig. 5. We can combine three 
real function values together with two fictitious values on the other side of the interface to obtain the Lagrange polynomial 
for one-side subdomain.

By taking derivatives on these one-sided polynomials, the jump values at an intersection point α with regard to y-
directions will take a general form in 3D as below

[ ∂
mu

∂ ym
]|y=α ≈ (wm

i, j−1,kûi, j−1,k + wm
i, j,kûi, j,k +

3∑
l=1

wm
i, j+l,kui, j+l,k)

− (

3∑
l=1

wm
i, j−3+l,kui, j−3+l,k + wm

i, j+1,kûi, j+1,k + wm
i, j+2,kûi, j+2,k), (19)

where wm
p,q,r denotes the finite difference weights for each function value at (xp , yq, zr) after taking mth derivative of the 

Lagrange polynomial at y = α. For �2, only approximation from the inside of �2 is involved at the intersection point α = d. 
In other words, the limit from outside of �2 is trivially zero. To be more clear, the first polynomial at the intersection point 
11
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Fig. 6. All possible corner scenarios in correcting the fourth order central difference. Empty circles denote the fictitious values at the grid points, while 
black dots indicate real function values.

d on the right hand side of Eq. (19) is zero because of the zero-padding function values beyond �2, see the right chart of 
Fig. 5 for an illustration.

2.3.3. Corner treatments
As discussed above, the ray-casting MIB scheme is naturally free of corner issue in generating fictitious values for the 

interface �1. Since �2 is flat, no corner point could occur along Cartesian directions. However, the correction of fourth order 
central difference along Cartesian directions near �1 may involve corner issues, which deserve further study. In order to 
reconstruct the derivative jumps in a safe manner, the local interface topology has to be monitored exclusively for �1, as 
demonstrated in [18]. Because of the tensor product nature of the AMIB scheme, one just needs to focus on the corner 
treatment in 1D. In practice, a Cartesian grid line may intersect with the interface twice within a relatively short distance, 
yielding two adjacent intersection points α and β , see Fig. 6. If both intersection points are within the grid range considered 
in Theorem 1, a new correction has to be developed for the fourth order finite difference.

Recently, a ray-casting AMIB scheme has been developed in [35] for solving initial boundary value problems of the diffu-
sion equation over irregular domains. In [35], all possible corner cases occurred in correcting fourth order central difference 
for a boundary value problem (BVP) have been examined, and the corresponding corrections have been successfully con-
structed. Interested readers are directed to Subsection 3.2.2 of Ref. [35] for a detailed description of different treatments for 
BVPs. Essentially, all corner cases occurred in interface problems can be corrected as in [35], except that the reconstruction 
of Cartesian derivative jumps needs function values from both outside and inside of �1, while for BVPs [35], the solution 
outside an irregular domain is trivially zero.

Recall that the reconstruction of derivative jumps in finite difference correction usually needs three function values on 
one side of the interface, and two fictitious values on the other side, as shown in Fig. 5. Thus, three scenarios should be 
considered for possible corner issues, depending on the distance between two intersection points α and β , see Fig. 6.

The first case is that at least three grid points are available between α and β , such as Fig. 6 (a). One names this corner 
situation as Type 1. In this case, the finite difference correction and derivative jump reconstruction at α and β are actually 
decoupled, and Eq. (19) can be safely used without modification. In the case of only two grid point between α and β , the 
finite difference correction used in [35] can be applied, while Eq. (19) needs to be modified. We name this corner situation 
as Type 2. For instance, to approximate jump values at α shown in Fig. 6 (b), we may simply use fictitious value ûi, j+3,k

instead of real function value ui, j+3,k in Eq. (19). Thus, the Cartesian derivative jumps in Type 2 are approximated by

[ ∂
mu

∂ ym
]|y=α ≈ (wm

i, j−1,kûi, j−1,k + wm
i, j,kûi, j,k +

2∑
l=1

wm
i, j+l,kui, j+l,k + wm

i, j+3,kûi, j+3,k)

− (

3∑
l=1

wm
i, j−3+l,kui, j−3+l,k + wm

i, j+1,kûi, j+1,k + wm
i, j+2,kûi, j+2,k). (20)

Furthermore, as the case becomes more extreme, we refer to Fig. 6 (c), in which only one grid point is positioned in 
between α and β . Such a case is called corner Type 3. The fourth order central difference can be corrected as in [35]. 
Here, for the purpose of constructing derivative jumps at α, a simple treatment is applied by replacing real function values 
ui, j+2,k, ui, j+3,k with fictitious values ûi, j+2,k, ̂ui, j+3,k , and substituting the function value ui, j+2,k for ûi, j+2,k in Eq. (19). In 
such a case, Eq. (19) can be rewritten as

[ ∂
mu

∂ ym
]|y=α ≈ (wm

i, j−1,kûi, j−1,k + wm
i, j,kûi, j,k + +wm

i, j+1,kui, j+1,k +
3∑

wm
i, j+l,kûi, j+l,k)
l=2

12



Y. Ren and S. Zhao Journal of Computational Physics 477 (2023) 111924
− (

3∑
l=1

wm
i, j−3+l,kui, j−3+l,k + wm

i, j+1,kûi, j+1,k + wm
i, j+2,kui, j+2,k). (21)

The treatment at β can be similarly formulated. With these corner treatments, the corrections to the fourth order central 
difference at various corner types can be accurately constructed.

2.4. Formulation of augmented system and FFT inversion

In the present study, an augmented linear system will be formulated for 3D elliptic interface problems, following the 
previous AMIB methods [16,18,17,46,35]. In particular, the Cartesian derivative jumps at various interface points on �1 and 
�2 will be introduced as auxiliary variables. Consequently, the 3D discrete Laplacian can be efficiently inverted by the fast 
Fourier transform (FFT) algorithm, while the auxiliary variables can be solved iteratively in the Schur complement procedure.

2.4.1. Augmented system
In order to construct the augmented system, we first consider the derivative jumps reconstruction Eq. (19) or Eq. (20) or 

Eq. (21) and rewrite it into an equivalent matrix form. Let N1 = (nx + 3) × (ny + 3) × (nz + 3) be the total number of interior 
grids of the whole cuboid domain D and N2 be the total number of the interface points in the x-, y- and z-directions.

In the preceding subsection, derivative jumps are reconstructed in terms of fictitious values at each intersection point 
between a grid line and �1 or �2. By introducing those derivative jumps as auxiliary variables, plugging the fictitious value 
representation Eq. (14) or Eq. (18) into Eq. (19) or Eq. (20) or Eq. (21) yields a generic linear equation

∑
(xI ,y J ,zK )∈Si, j,k

C I, J ,K uI, J ,K + [ ∂
mu

∂ ym
] = CoG + C0φ + C1ψ, (22)

where C I, J ,K is the corresponding weights of function value uI, J ,K in approximation to jump quantity [ ∂mu
∂ ym ], and G, φ, and 

ψ are the known interface data. As a matter of fact, one can obtain formulas similar to Eq. (22) for all interface points in 
x-, y- and z-directions.

Furthermore, one denotes the 1D column vector Q of dimension 5N2 ×1 as a vector of the introduced auxiliary variables 
[ ∂mu

∂xm ]i, [ ∂mu
∂ ym ] j , and [ ∂mu

∂zm ]k, m = 0, 1, · · · , 4 for i = 1, 2, · · · , j = 1, 2, · · · , and k = 1, 2, · · · , at total N2 intersection points 
between grid lines and �1 or �2. Unknown function values at N1 interior grids within the domain D are formed in a 1D
column vector U of dimension N1 × 1. After generalizing Eq. (22) from one interface point to all interface points, the matrix 
form of Eq. (22) is then written as

C U + I Q = �, (23)

where C is a sparse matrix of dimension 5N2 × N1, I is the identity matrix of dimension 5N2 × 5N2, and � is a column 
vector of dimension 5N2 × 1 composed of the known interface quantities.

For the 3D elliptic problem (9), denote Ui, j,k as the discrete solution at (xi, y j, zk). Making use of the corrected differ-
ences at all interior mesh grids and taking correction terms as auxiliary variables, the PDE (9) can be discretized as

LhUi, j,k + Ci, j,k = f i, j,k, 1 ≤ i ≤ nx + 3, 1 ≤ j ≤ ny + 3, 1 ≤ k ≤ nz + 3 (24)

where Ci, j,k is the correction term, and LhUi, j,k is the standard fourth order central difference approximation to the Lapla-
cian operator with a degree of freedom N1. Consequently, the resulting equation in the matrix form is given by

( Ā − κ I)U + B Q = F , (25)

where B is a sparse matrix of dimension N1 by 5N2 consisting of coefficients from correction terms, and F is a vector of 
dimension N1 × 1 with entries being f i, j,k . The symmetric and diagonally dominant matrix ( Ā − κ I) consist of coefficients 
from discretizing the 3D differential operator � − κ obtained via the fourth order central difference.

From now on, let us denote Ā − κ I as A. Coupling (25) and (23) yields an augmented system,

K W = R, (26)

where

K =
(

A B
C I

)
, W =

(
U
Q

)
, and R =

(
F
Φ

)
.

13
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2.4.2. FFT inversion
The inversion of matrix A can be carried out by 3D FFT fast Poisson solver. As suggested in [18], an anti-symmetric 

property at ∂ D is trivially satisfied in the proposed AMIB method. Moreover, taking advantage of the corrected central 
differences and auxiliary variables, the solution discontinuities will not be sensed in the FFT computation at both �1 and 
�2. By the tensor product approach, the generalization to 3D FFT inversion of A can be carried out based on 1D FFT 
inversion.

With parameters P , Q , T being nx + 3, ny + 3, nz + 3 respectively, consider a 3D linear system

Au = f , (27)

where A is a constant matrix resulting from fourth order central difference discretization. The FFT inversion of (27) is 
obtained via the 3D fast Sine transform (FST) as described below:

1. Relabel f to be an equivalent 3D array [ f p,q,t] for p = 1, · · · , P , q = 1, · · · , Q , t = 1, · · · , T , and compute the Sine 
transform for f p,q,t via 3D inverse fast Sine transform (IFST)

f̂ l,m,n = 8
(P+1)(Q +1)(T +1)

P∑
p=1

Q∑
q=1

T∑
t=1

f p,q,t sin(
lpπ
P+1 ) sin(

mqπ
Q +1 ) sin( ntπ

T +1 ),

for l = 1, · · · , P , m = 1, · · · , Q , n = 1, · · · , T .

2. Compute
λx

l = − 1
3h2 [cos( lπ

P+1 ) − 1][cos( lπ
P+1 ) − 7],

λ
y
m = − 1

3h2 [cos( mπ
Q +1 ) − 1][cos( mπ

Q +1 ) − 7],
λz

n = − 1
3h2 [cos( nπ

T +1 ) − 1][cos( nπ
T +1 ) − 7],

ûl,m,n = f̂l,m,n

λx
l +λ

y
m+λz

n−κ
, for l = 1, 2, · · · , P , m = 1, · · · , Q , n = 1, · · · , T .

3. Compute up,q,t via 3D fast Sine transform (FST):

up,q,t =
P∑

l=1

Q∑
m=1

T∑
n=1

ûl,m,n sin(
lpπ
P+1 ) sin(

lqπ
Q +1 ) sin( ltπ

T +1 ),

for p = 1, · · · , P , q = 1, · · · , Q , t = 1, · · · , T . The resulting 3D array [up,q,t] is then reshaped to a 1D vector for the 
solution of the linear system.

2.4.3. Schur complement
A Schur complement method is used to eliminate U from the augmented system (26), forming a linear system with 

dimension 5N2 × 5N2 for Q

(I − C A−1 B)Q = Φ − A−1 F . (28)

The detailed explanation of implementation on Schur complement system (28) with a biconjugate gradient iteration is 
presented as below:

1. The calculation of the right side F̂ = Φ − C A−1 F involves performing FFT on F for A−1 F and additional matrix-vector 
multiplication and vector-vector subtraction.

2. The left hand multiplication of matrix by vector (I − C A−1 B)Q is achieved by I Q − C A−1 B Q . To be more clear, B Q
is obtained by direct matrix-vector multiplication. A FFT is again utilized on A−1 B Q and it is followed with additional 
direct matrix-vector manipulation and vector-vector subtraction for I Q − C A−1(B Q ). The transpose of (I − C A−1 B)T Q
is done on I Q − BT A−1C T Q by following the same strategy.

3. An initial guess Q = (0, 0, · · · , 0)T starts the biconjugate gradient iteration, and Q will be updated to start a new 
iteration until either the maximal iteration number 5000 or error tolerance equaling to 10−12 is reached.

After the auxiliary vector Q is solved from (28), the numerical solution U could be solved by one more FFT inversion

AU = F − B Q .

The iterative solution of Eq. (28) is known to be quite efficient in the existing AMIB methods [16,18,17,46,35], due to 
two reasons. First, dimension 5N2 of Q is one dimensionally smaller than that of U , i.e., N1 = (nx + 3) × (ny + 3) × (nz + 3)

or the total degree of freedom in 3D. Second, iterative number in the biconjugate gradient solution of Eq. (28) usually just 
weakly depends on N2 in the AMIB method. Consequently, the major computational cost is consumed by the FFT inversion 
of 3D discrete Laplacian, so that the total complexity of the AMIB method for solving 3D elliptic interface problems is 
O (N1 log N1).
14
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3. Numerical experiments

In this section, we will examine the accuracy and efficiency of the proposed ray-casting AMIB scheme solving two or 
three dimensional elliptic equations with piecewise constant β . Moreover, the proposed ray-casting MIB scheme will also 
be examined, in which when the fourth order central difference stencil is crossing the interface, the fictitious values will be 
simply supplied. In solving 2D interface problems, the Cartesian MIB and the corresponding AMIB introduced in [18] will 
also be employed for a comparison. While all four methods are fourth order of accurate, their robustness and efficiency 
could be different.

For simplicity, the domain D will be assumed to be a cubic domain with a uniform number of subintervals in each 
direction, i.e., n = nx = ny = nz . The accuracy and convergence of the numerical solution in 3D problems are tested by 
measuring errors in the maximum norm and L2 norm

L∞ = max
(xi ,y j ,zk)∈�−∪�+ |u(xi, y j, zk) − uh(xi, y j, zk)|,

L2 =
√√√√ 1

(n + 1)3

∑
(xi ,y j ,zk)∈�−∪�+

|u(xi, y j, zk) − uh(xi, y j, zk)|2,

where u(xi, y j, zk) and uh(xi, y j, zk) are respectively analytical and numerical solution. The error norms in 2D can be simi-
larly defined.

The accuracy in approximating solution gradients or fluxes will be examined for some examples. The fourth order central 
difference is employed for ∂uh

∂x , ∂uh
∂ y , and ∂uh

∂z in the computation of the discrete gradient ∇uh(xi, y j, zk). For instance,

∂uh

∂x
(xi, y j, zk) �

1

12h
uh(xi−2, y j, zk) − 8

12h
uh(xi−1, y j, zk) + 8

12h
uh(xi+1, y j, zk) − 1

12h
uh(xi+2, y j, zk), (29)

and ∂uh
∂ y and ∂uh

∂z can be computed similarly. When the fourth order central difference stencil crosses the interface, the 
function values are replaced with the corresponding fictitious values in Eq. (29). Then, the errors of gradient approximation 
can be considered in the maximum norm and L2 norm defined as

L∞ = max
(xi ,y j ,zk)∈�−∪�+ max{|∂u

∂x
(xi, y j, zk) − ∂uh

∂x
(xi, y j, zk)|, | ∂u

∂ y
(xi, y j, zk) − ∂uh

∂ y
(xi, y j, zk)|,

| ∂u

∂ y
(xi, y j, zk) − ∂uh

∂ y
(xi, y j, zk)|},

L2 =
√√√√ 1

(n + 1)3

∑
(xi ,y j ,zk)∈�−∪�+

||∇u(xi, y j, zk) − ∇uh(xi, y j, zk)||22,

where ∇u(xi, y j, zk) and ∇uh(xi, y j, zk) are respectively analytical and numerical gradient.
The convergence rate will be measured by the formula

order = log(||E1||/||E2||)
log(h1/h2)

,

where ||Ei|| is the error based a mesh spacing hi for i = 1, 2, using the above defined norms on (n + 1) × (n + 1) × (n + 1)

mesh for the interested domain �− ∪�+ . The solution calculation is facilitated by a FFT subroutine from Numerical Recipes 
[45] with 2k summation. Due to the restriction of partition number equaling to 2k in the subroutine, non-bisectional mesh 
refinement is usually conducted in the error analysis.

All the experiments are carried out by using a single core on a Dell PowerEdge R920 in The University of Alabama 
High-Performance Computer (UAHPC) (https://oit .ua .edu /services /research/) with Intel® Xeon® CPU E7-8891 v2 operating at 
3.20 GHz clock speed.

3.1. Numerical examples in 2D

We first consider two examples in 2D so that the proposed ray-casting AMIB scheme can be compared with the existing 
MIB schemes.

Example 1. This example focuses on a 2D Poisson’s equation

(βux)x + (βu y)y = q(x, y), (30)
15
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Table 1
Example 1 – β+ = 10−4, β− = 1; circular interface.

[n,n] Ray-casting AMIB

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[60,60] 1.182E-2 – 5.537E-3 – 66 0.113
[124,124] 4.962E-4 4.5744 2.344E-4 4.5622 39 0.267
[252,252] 3.284E-5 3.9176 1.557E-5 3.9117 56 1.338
[508,508] 3.159E-6 3.3770 1.501E-6 3.3748 123 10.650

[n,n] Ray-casting MIB

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[60,60] 1.753E-2 – 8.212E-3 – 579 0.176
[124,124] 4.353E-4 5.3320 2.056E-4 5.3200 1335 1.307
[252,252] 2.610E-5 4.0595 1.238E-5 4.0537 3254 11.979
[508,508] 2.133E-6 3.6130 1.012E-6 3.6121 15140 213.963

[n,n] Cartesian AMIB [18]

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[60,60] – – – – – –
[124,124] 9.327E-4 – 4.406E-4 – 41 0.276
[252,252] 5.898E-5 3.9831 2.797E-5 3.9772 56 1.396
[508,508] 3.321E-6 4.1505 1.578E-6 4.1477 97 8.395

[n,n] Cartesian MIB [18]

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[60,60] 2.087E-2 – 9.776E-3 – 898 0.329
[124,124] 8.824E-4 4.5639 4.168E-4 4.5518 1442 1.867
[252,252] 5.713E-5 3.9491 2.710E-5 3.9432 4002 19.679
[508,508] – – – – – –

over in a square [− π
3.5 , π

3.5 ] × [− π
3.5 , π

3.5 ] with a circular interface � defined by r2 := x2 + y2 = 0.32. The exact solution to 
this problem is prescribed as

u(x, y) =
{

cos(kx)e y, r ≤ 0.3,

ex(x2 sin(y) + y2), otherwise,
(31)

with the diffusion coefficient

β =
{

1, r ≤ 0.3,

10−4, otherwise,

and the parameter k is chosen to be 3. Here we call β as β+ when it is outside the interface �, and β− when it is inside 
the interface �. The same principle is followed for the below notations. The source term q(x, y) is related to the above 
designated solution,

q(x, y) =
{

(1 − k2)β− cos(kx)e y, r ≤ 0.3,

β+ex(2 + y2 + (4x + 2) sin y), otherwise.

On the boundary of the domain [− π
3.5 , π

3.5 ] × [− π
3.5 , π

3.5 ], a Dirichlet boundary condition is assumed with the boundary 
data derived by the analytical solution. For treating such a Dirichlet boundary condition, the introduction of an extended 
domain �e is necessary in the ray-casting AMIB and Cartesian AMIB schemes. Consequently, the mesh size is taken to be 
(n + 5) × (n + 5) for the whole domain D = �− ∩ �+ ∩ �e in two AMIB schemes. Without the extended domain �e , the 
mesh size of the ray-casting MIB and Cartesian MIB schemes will be (n + 1) × (n + 1) so that the grid spacing h is the same.

Taking β+ = 10−4 and β− = 1, the numerical results of the ray-casting AMIB, ray-casting MIB, Cartesian AMIB, and 
Cartesian MIB methods are presented in Table 1. It can be seen that all four methods achieve fourth order of convergence, 
and two ray-casting methods are slightly more accurate. Two failure cases are encountered in this example. First, the 
Cartesian AMIB scheme fails on a coarse mesh with [n, n] = [60, 60]. Note that the underlying Cartesian MIB scheme is 
able to handle the interface � based on the same mesh resolution. Thus, the failure is due to the lack of corner treatments 
in the augmented formulation for correcting the fourth order central differences. By using the corner treatments discussed 
in Section 2.3.3, the ray-casting AMIB scheme is free of corner issues, and yields a satisfactory result for the coarse mesh 
with [n, n] = [60, 60]. Second, the iterative solution of the Cartesian MIB scheme fails to converge for a dense mesh with 
[n, n] = [508, 508], while the Cartesian AMIB scheme works for this dense mesh. Since both schemes use the same set of 
16



fictitious values, this means that such fictitious values are actually correct, and the failure is simply due to iterative solution 
process for a large matrix with irregular structure. It is noted that if a more robust algebraic solver is used, the Cartesian 
MIB scheme may still produce a sound numerical solution at [508, 508]. The present study indicates that with an augmented 
formulation and the FFT inversion, the AMIB scheme becomes more robust than the MIB scheme. This is one of motivations 
for developing the AMIB schemes [16–18,46,35].

The efficiency of the four methods is also reported in Table 1 by means of the iteration number and CPU time. It can 
be seen that two AMIB schemes are much more efficient than the corresponding MIB schemes, and the Cartesian AMIB 
method is slightly faster than the ray-casting AMIB method in this example. Focusing on the ray-casting schemes, when the 
mesh size is doubled for three times, the iteration number of the AMIB is doubled, while the iteration number of the MIB 
becomes 26 times larger. Consequently, on a mesh 513 by 513, the ray-casting AMIB scheme is about 21 times faster than 
the ray-casting MIB.

We next examine the dependence of accuracy and efficiency on the PDE coefficient β . Following [4,18], the impact of 
highly contrasted coefficients is investigated, by changing β+ from 10−4 to 109 with β− = 1. A dense mesh with [n, n] =
[508, 508] is used, which keeps the spacing h to be the same in the four methods. The L∞ error, L2 error, iteration number, 
and CPU time of the four methods are plotted against β+ in Fig. 7. For the Cartesian MIB, extrapolations in jump condition 
discretization can be carried out either from positive or negative side of �. An upwinding procedure was suggested in [18], 
in which the extrapolation direction depends on whether β− ≤ β+ or β− < β+ , so that the accuracy and condition number 
of the Cartesian MIB and AMIB schemes could be improved. We note that in the proposed ray-casting MIB method, no 
extrapolation is needed, and the same procedure is utilized no matter β− is larger or smaller than β+ .

For two error subplots in Fig. 7, it can be seen that errors increase significantly as β+ goes to zero, while they do not 
grow as β+ increases. It is well known that as the PDE coefficient β+ approaches to zero, the elliptic problem becomes 
a singular perturbation one, which is very challenging to solve numerically. This is why all four methods produce much 
large errors as β+ becomes smaller, and the Cartesian MIB scheme fails when β+ = 10−4. For β+ > 1, we can see that two 
Cartesian MIB schemes yield the same errors, except at 103, while the errors of two ray-casting MIB schemes are different 
for different β+ values. Moreover, ray-casting MIB schemes are more accurate than Cartesian MIB schemes, even though 
an adaptive extrapolation is used in the two Cartesian MIB schemes. In terms of efficiency, in all cases, two AMIB methods 
need much smaller iteration numbers, and consume much less computational time. Also, the Cartesian AMIB scheme is 
slightly more efficient than the ray-casting AMIB scheme for extreme β+ values.

Example 2. The second example concerns the Poisson equation (30) on a square domain [− π
3.5 , π

3.5 ] × [− π
3.5 , π

3.5 ], and the 
interface � is given as

r = 0.5 + b sin(5θ),

with b = 0.12. This results in a five-leaf interface as shown in Fig. 8. In this example, the exact solution is defined by

u(x, y) =
{

e−x2−0.5y2
, inside �,

sin(kx) sin(ky), otherwise,
(32)

with k = 3 and the diffusion coefficient is given as

β =
{

10, inside �,

1, otherwise.

The source term q(x, y) is related to the above designated solution,

q(x, y) =
{

(4x2 + y2 − 3)β−e−x2−0.5y2
, inside �,

−2k2β+ sin(kx) sin(ky), otherwise.

Two boundary conditions are studied for the present example, i.e., a Dirichlet condition and a Robin condition, and the 
boundary data is derived based on the analytical solution. For simplicity, only the ray-casting and Cartesian AMIB schemes 
will be tested. The numerical results are listed in Table 2 and Table 3. In terms of accuracy, the results of two boundary 
conditions are quite similar. In particular, the Cartesian AMIB scheme is slightly more accurate than the ray-casting AMIB. 
However, when [n, n] = [252, 252], the Cartesian AMIB scheme is experiencing some corner issue, so that it fails in both 
cases with different boundary conditions. Here the corner issue is due to that one Cartesian grid line cuts the interface 
within a length of 2h. Unfortunately, for a complicated interface like the present �, such corner issue could happen for 
any mesh resolution, no matter coarse or dense. In the present case, the failure occurs at n = 252, but the Cartesian AMIB 
scheme works for other n values. With the proposed corner treatments, the ray-casting AMIB scheme maintains the fourth 
order accuracy for [n, n] = [252, 252]. The numerical solution and error of the ray-casting AMIB method are depicted in 
Fig. 8 by considering the Dirichlet boundary condition and taking n = 252. It is observed that the maximal errors occur 
around the five-leaf interface �, while the errors near boundary are almost the same as regular points.

In terms of efficiency, it can be seen from Table 2 and Table 3 that the iteration numbers for the Robin condition are 
larger than those for the Dirichlet condition. Thus, the CPU time becomes at least doubled for each case when the Dirichlet 
Y. Ren and S. Zhao Journal of Computational Physics 477 (2023) 111924
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Fig. 7. Impact of highly contrasted coefficients to the ray-casting MIB, ray-casting AMIB, Cartesian MIB, and Cartesian AMIB methods for the 2D circular 
interface problem with a fixed β− being 1 and β+ ranging from 10−4 to 109.

Fig. 8. The numerical solution (left) and error (right) of the ray-casting AMIB method for Example 2a on a mesh with n = 252.
18
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Table 2
Example 2a – β+ = 1, β− = 10; five-leaf interface; Dirichlet boundary condition.

[n,n] Ray-casting AMIB

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[60,60] 3.005E-4 – 7.832E-5 – 48 0.104
[124,124] 1.559E-5 4.2688 3.044E-6 4.6856 53 0.308
[252,252] 1.310E-6 3.5728 2.163E-7 3.8146 99 1.541
[508,508] 1.644E-7 2.9948 2.747E-8 2.9772 88 5.014

[n,n] Cartesian AMIB [18]

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[60,60] 1.348E-4 – 3.897E-5 – 46 0.134
[124,124] 7.093E-6 4.2487 1.628E-6 4.5810 53 0.278
[252,252] – – – – – –
[508,508] 3.082E-8 3.9232 7.153E-9 3.9152 75 4.331

Table 3
Example 2b – β+ = 1, β− = 10; five-leaf interface; Robin boundary condition.

[n,n] Ray-casting AMIB

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[60,60] 3.338E-4 – 1.093E-4 – 58 9.066E-2
[124,124] 1.628E-5 4.3580 3.823E-6 4.8386 76 0.342
[252,252] 1.363E-6 3.5782 2.731E-7 3.8070 144 2.255
[508,508] 1.739E-7 2.9702 3.915E-8 2.8024 172 11.365

[n,n] Cartesian AMIB [18]

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[60,60] 1.446E-4 – 5.018E-5 – 59 0.104
[124,124] 7.671E-6 4.2366 2.007E-6 4.6444 80 0.430
[252,252] – – – – – –
[508,508] 3.164E-8 3.9608 9.567E-9 3.8562 180 13.534

condition is replaced with the Robin condition, owning to the difficult nature of the Robin condition. On the other hand, the 
ray-casting AMIB scheme is more efficient than the Cartesian AMIB scheme in case of a Robin boundary, while it is slower 
for the Dirichlet case.

3.2. Numerical examples in 3D

We next validate the ray-casting MIB and AMIB schemes in 3D. The Cartesian AMIB scheme [18] was developed only 
for 2D elliptic interface problems. Moreover, the above 2D studies show that the Cartesian AMIB scheme suffers from 
corner issues, while such issues are rigorously treated in the ray-casting AMIB scheme. Since the corner issues happen more 
frequently in 3D, we will only consider ray-casting schemes for 3D examples. For simplicity, we will refer to the ray-casting 
MIB and AMIB as the MIB and AMIB, respectively. In each 3D test case, the number of corner points which have been 
treated in our computation will be reported.

Example 3. Consider a 3D Poisson’s equation

(βux)x + (βu y)y + (βuz)z = q(x, y, z), (33)

over a cubic domain [−π
3 , π3 ] × [−π

3 , π3 ] × [−π
3 , π3 ] with a spherical interface defined by

� : x2 + y2 + z2 = 0.42.

The analytical solution to this problem is constructed to be

u(x, y, z) =
{

sin(x + y + z), inside �,

sin(kx) sin(ky) sin(kz), otherwise,
(34)

with k = 3. The source term q(x, y, z) is related to the above designated solution,
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Fig. 9. The plots of exact solutions and numerical error of the ray-casting AMIB scheme by mapping onto the spherical surface �, based on a mesh with 
n = 128.

q(x, y, z) =
{ −3β− sin(x + y + z), inside �,

−3k2β+ sin(kx) sin(ky) sin(kz), otherwise.

On the boundary of the cubic domain, a Dirichlet boundary condition is assumed with the boundary data derived by the 
analytical solution.

By considering β+ = 100 and β− = 1, the analytical solutions u−(x, y, z) and u+(x, y, z) are depicted in Fig. 9. In particu-
lar, the graphs are generated by mapping the solutions onto the spherical surface � from inside and outside, respectively, for 
u−(x, y, z) and u+(x, y, z). While two solutions are smooth in their subdomains, the entire solution u(x, y, z) is obviously 
discontinuous across �.

In our computation, since the solution u+ = sin(kx) sin(ky) sin(kz) naturally satisfies the anti-symmetry property across 
the boundary of the cubic domain [−π

3 , π3 ] ×[−π
3 , π3 ] ×[−π

3 , π3 ], there is no need to introduce an extended domain �e and 
additional interface �2. Without using the MIB boundary closure [57,17], this allows us to solely focus on the performance 
of the ray-casting scheme for treating the surface �. For both MIB and AMIB schemes, the same mesh size is used, i.e., 
(n + 1) × (n + 1) × (n + 1).

The numerical results of the MIB and AMIB schemes are reported in Table 4, in which the number of corner points is 
reported for each tested n value. It can be seen that the AMIB scheme attains a fourth order of accuracy, while the MIB 
scheme converges slower for n = 128 and fails for n = 256. Similar to Example 1 in 2D, the AMIB method is well conditioned 
such that the iteration number only weakly depends on the mesh size n. Thus, the AMIB method is much faster than the 
MIB method. Because the iteration number increases dramatically for the MIB scheme, the MIB computation on a mesh 
257 × 257 × 257 was terminated by the system due to an excessive long runtime. In Table 4, the gradient approximation 
by the AMIB scheme is also reported. Based on the numerical solutions, the gradient can be simply estimated, and the 
corresponding numerical order is also four. The numerical error of the AMIB scheme at n = 128 is shown in Fig. 9 (c). It is 
seen that large errors occur in the places where the solutions have large magnitudes.

We next increase the diffusion coefficient to be β+ = 104 and β− = 1, while keeping the other parameters unchanged. 
In Table 5, the numerical results of the AMIB are displayed. By comparing with Table 4, we found that the changes in 
accuracies and orders are very minor, but the iteration number becomes larger at the densest mesh. This means that a high 
jump ratio may affect the efficiency of the AMIB method when a very dense mesh is used in 3D.

Example 4. We consider a topologically shaped interface in this example. Because the MIB scheme is too slow for 3D 
computations, we will only consider the ray-casting AMIB scheme from now on. The 3D Poisson’s equation (33) is studied 
with a tanglecube surface defined as

� : 8x4 + 8y4 + 8z4 − 10x2 − 10y2 − 10z2 = −5,

embedded in a computational domain of dimension [− 2π
3 , 2π

3 ] × [− 2π
3 , 2π

3 ] × [− 2π
3 , 2π

3 ]. Two exact solutions of Poisson 
equation are designated by

u(x, y, z) =
{

cos(kx) sin(ky) cos(kz), inside �,

sin(kx) sin(ky) sin(kz), otherwise,
(35)

with k = 3. The corresponding source terms are

q(x, y, z) =
{ −3k2β− cos(kx) sin(ky) cos(kz), inside �,

−3k2β+ sin(kx) sin(ky) sin(kz), otherwise.
(36)

By taking β+ = 20 and β− = 1, the analytical solutions u−(x, y, z) and u+(x, y, z) are depicted in Fig. 10. It can be seen 
that the tanglecube surface is of a complicated shape, and the solution u(x, y, z) is discontinuous.
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Table 4
Example 3a – β+ = 100, β− = 1; Spherical interface. The number of corner points is 24, 24, 
0 and 0, respectively, for n =32, 64, 128, and 256.

[n,n,n] AMIB Solution

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[32,32,32] 3.846E-4 – 3.228E-5 – 19 0.845
[64,64,64] 3.948E-5 3.2839 1.748E-6 4.2068 23 5.112
[128,128,128] 1.745E-6 4.5002 8.203E-8 4.4133 50 60.637
[256,256,256] 7.582E-8 4.5243 4.120E-9 4.3153 78 654.356

[n,n,n] AMIB Gradient

L∞ L2

Error Order Error Order

[32,32,32] 5.692E-3 – 5.502E-4 –
[64,64,64] 7.936E-4 2.8424 2.815E-5 4.2888
[128,128,128] 3.527E-5 4.4919 1.251E-6 4.4926
[256,256,256] 3.576E-6 3.3021 6.041E-8 4.3717

[n,n,n] MIB Solution

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[32,32,32] 1.732E-2 – 2.613E-4 – 455 15.322
[64,64,64] 2.846E-4 5.9274 3.361E-6 6.2807 1546 257.489
[128,128,128] 1.253E-4 1.1837 5.368E-8 2.6466 5074 5399.483
[256,256,256] – – – – – –

Table 5
Example 3b – β+ = 104, β− = 1; Spherical interface. The number of corner points is 24, 24, 
0 and 0, respectively, for n =32, 64, 128, and 256.

[n,n,n] AMIB Solution

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[32,32,32] 4.007E-4 – 3.366E-5 – 19 0.753
[64,64,64] 4.370E-5 3.1968 1.939E-6 4.1178 23 6.067
[128,128,128] 1.832E-6 4.5761 8.636E-8 4.4891 55 73.805
[256,256,256] 8.105E-8 4.4985 4.404E-9 4.2933 186 1462.9773

Fig. 10. The plots of exact solutions and numerical error of the ray-casting AMIB scheme by mapping onto the tanglecube surface �, based on a mesh with 
n = 128.

A simple Dirichlet zero boundary condition can be assumed for this example so that the anti-symmetry property is 
satisfied again at the boundary. The mesh size of the AMIB scheme is (n + 1) × (n + 1) × (n + 1). The numerical results of 
the AMIB scheme are reported in Table 6. Obviously, the AMIB scheme achieves fourth order convergence in both solution 
and gradient. In terms of efficiency, the iteration number of the AMIB is larger than Example 3a on the same mesh size, 
even if the ratio of β+ over β− is not that large. This is mainly because the tanglecube surface is much more complicated 
than spherical surface such that the AMIB in this example involves more auxiliary variables at the interface. The numerical 
error of the AMIB scheme is demonstrated in Fig. 10 (c). It is found that the error distribution pattern is quite concentrated, 
due to the fact that the large errors usually occur on or near the interface.
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Table 6
Example 4 – β+ = 20, β− = 1; Tanglecube interface; The number of corner points is 72, 48, 
120 and 24, respectively, for n =64, 128, and 256, 512.

[n,n,n] AMIB Solution

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[64,64,64] 1.808E-3 – 1.159E-4 – 40 13.53
[128,128,128] 1.742E-4 3.3757 9.787E-6 3.5657 53 99.15
[256,256,256] 8.880E-6 4.2938 5.433E-7 4.1712 85 929.29
[512,512,512] 4.404E-7 4.3336 3.008E-8 4.1750 90 9514.02

[n,n,n] AMIB Gradient

L∞ L2

Error Order Error Order

[64,64,64] 5.694E-2 – 1.080E-3 –
[128,128,128] 4.231E-3 3.7503 6.637E-5 4.0243
[256,256,256] 3.441E-4 3.6200 3.184E-6 4.3819
[512,512,512] 6.255E-5 2.4600 1.649E-7 4.2707

Table 7
Example 5 – β+ = 20, β− = 1; Flower interface. The number of corner points is 27, 57, 37, 
73, respectively, for n =32, 64, 128, and 256.

[n,n,n] AMIB Solution

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[32,32,32] 1.656E-2 – 1.309E-3 – 41 0.856
[64,64,64] 9.682E-4 4.0960 5.457E-5 4.5846 62 8.821
[128,128,128] 2.231E-4 2.1172 8.238E-6 2.7277 117 113.313
[256,256,256] 8.529E-6 4.7095 4.337E-7 4.2475 140 1046.385

Example 5. Reusing the exact solution (35) and source term (36) with k = 6, one more example is considered to solve 3D 
Poisson’s equation (33) with a non-smooth flower-like interface [55]

� : r = 0.6 + 0.12 sin 5θ, −0.3 � z � 0.3,

where r = √
x2 + y2 and θ = arctan( x

y ). The computational domain is set to [−π
3 , π3 ] ×[−π

3 , π3 ] ×[−π
3 , π3 ], and the diffusion 

coefficients β+ and β− are chosen as 20 and 1, respectively.
With a Dirichlet boundary condition, the anti-symmetry property is satisfied. The numerical results are presented in 

Table 7. It is noted that the horizontal cross-section of the present 3D shape is similar to the 2D five-leaf interface studied 
in Example 2. Thus, many fictitious values can be generated by using ray-casting lines completely contained in some xy
planes. In other words, they are generated in a 2D manner. For the 3D flower interface, the AMIB scheme achieves the 
fourth-order convergence in Table 7. The flower interface is depicted in Fig. 11 with surface maps of exact solutions and 
numerical errors. It is found that large numerical errors occur where there are large curvatures.

Example 6. In this example, a Poisson-Boltzmann type problem

(βux)x + (βu y)y + (βuz)z − βu = q(x, y, z),

is studied with a smooth molecular surface of two atoms defined by

� : (x2 + y2 + z2 + 3

5
)2 − 5

2
y2 = 3

5
.

With the parameter k = 3, the exact solutions are constructed to be

u(x, y, z) =
{

e−x2−y2/2−z2/2 inside �,

sin(kx) sin(ky) sin(kz) otherwise,

and the corresponding source terms are

q(x, y, z) =
{

(−4 + 4x2 + y2 + z2)β−e−x2−y2/2−z2/2 inside �,

−3k2β+ sin(kx) sin(ky) sin(kz) otherwise.

The plots of solutions u− and u+ mapped onto the molecular surface are given in Fig. 12.
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Fig. 11. The plots of exact solutions and numerical error of the ray-casting AMIB scheme by mapping onto the flower surface �, based on a mesh with 
n = 128.

Table 8
Example 6 – β+ = 20, β− = 1; Molecular interface of two atoms. The number of corner points 
is 8, 8, 0 and 8, respectively, for n =32, 64, 128, and 256.

[n,n,n] AMIB Solution

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[32,32,32] 2.193E-3 – 1.882E-4 – 26 0.774
[64,64,64] 1.740E-4 3.6559 8.652E-6 4.4429 31 6.295
[128,128,128] 1.790E-5 3.2811 4.572E-7 4.2422 49 61.904
[256,256,256] 2.019E-6 3.1485 2.758E-8 4.0513 79 664.513

The numerical results are presented in Table 8 for β+ = 20 and β− = 1. Again, a simple Dirichlet boundary condition 
is used, with the anti-symmetry property satisfied. Table 8 shows that the AMIB method is equally capable of solving 3D 
Poisson-Boltzmann equation. The fourth order convergences are again confirmed in the solution. The efficiency of the AMIB 
is further validated. The error plot in Fig. 12 shows that the maximum errors occur in the regions where the largest jumps 
take place across the interface.

Example 7. We next consider a 3D Helmholtz equation

(βux)x + (βu y)y + (βuz)z + βu = q(x, y, z).

The interface is a smooth torus surface

� : (0.9 −
√

x2 + y2)2 + z2 = 0.2,

restricted on a cubic domain [− 2π
3 , 2π

3 ] × [− 2π
3 , 2π

3 ] × [− 2π
3 , 2π

3 ]. Two exact solutions of Poisson equation are designated 
by

u(x, y, z) =
{

cos(x + y + z) inside �,

sin(kx) sin(ky) sin(kz) otherwise,

with k = 3. The corresponding source terms are

q(x, y, z) =
{ −3β− cos(x + y + z) inside �,

−3k2β+ sin(kx) sin(ky) sin(kz) otherwise.

The torus surface and solutions u− and u+ are shown in Fig. 13.
By taking β+ = 1 and β− = 20, the numerical results are presented in Table 9. The fourth order convergence is attained 

for both solution and gradient. The iteration numbers of the AMIB are larger than the previous examples on the same mesh 
size, probably due to the fact that the β contrast ratio is reversed. Nevertheless, the grow rate of the iteration number with 
respect to the mesh size n is still moderate, so that the efficiency of the AMIB is not reduced. The numerical error is shown 
in Fig. 13. It can be seen that the largest errors occur at regions where the solution changes rapidly. (See Fig. 13.)

Example 8. In the last example, we solve the 3D Poisson’s equation (33) with different boundary conditions. The interface 
is a simple cylinder surface, which is defined as
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Fig. 12. The plots of exact solutions and numerical error of the ray-casting AMIB scheme by mapping onto the molecular surface �, based on a mesh with 
n = 128.

Table 9
Example 7 – β+ = 1, β− = 20; Torus interface. The number of corner points is 16, 8, 8 and 
0, respectively, for n =64, 128, 256, and 512.

[n,n,n] AMIB Solution

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[64,64,64] 5.451E-4 – 3.916E-5 – 75 13.673
[128,128,128] 4.481E-5 3.6044 3.405E-6 3.5236 76 97.767
[256,256,256] 3.101E-6 3.8531 2.195E-7 3.9555 92 813.712
[512,512,512] 1.825E-7 4.0865 1.317E-8 4.0588 109 8678.912

[n,n,n] AMIB Gradient

L∞ L2

Error Order Error Order

[64,64,64] 1.807E-2 – 3.924E-4 –
[128,128,128] 2.240E-3 3.0115 2.443E-5 4.0057
[256,256,256] 7.199E-4 1.6377 1.448E-6 4.0761
[512,512,512] 3.238E-5 4.4746 7.922E-8 4.1924

Fig. 13. The plots of exact solutions and numerical error of the ray-casting AMIB scheme by mapping onto the torus surface �, based on a mesh with 
n = 128.

� : x2 + y2 = 0.72, −0.7 � z � 0.7.

The analytical solution to this problem is constructed to be

u(x, y, z) =
{

cos(kx) sin(ky) cos(kz), inside �,

sin(kx)e y+z, otherwise,
(37)

with k = 3. The source term q(x, y, z) is related to the above designated solution,

q(x, y, z) =
{ −3k2β− cos(kx) sin(ky) cos(kz), inside �,

(2 − k2)β+ sin(kx)e y+z, otherwise.

The computational domain is fixed to be [− 2π
3.5 , 2π

3.5 ] ×[− 2π
3.5 , 2π

3.5 ] ×[− 2π
3.5 , 2π

3.5 ]. The diffusion coefficient is chosen as β+ = 10
and β− = 1.

We note that for the present u+(x, y, z) and domain, the anti-symmetric property is not satisfied across the boundary. 
Consequently, the boundary will be treated as an immersed interface �2 with an extended domain �e as the zero-padding 
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Table 10
Example 8a – β+ = 10, β− = 1; Cylinder interface; Dirichlet boundary condition. The number 
of corner points is 0, 0, 0 and 0, respectively, for n =28, 60, 124, and 252.

[n,n,n] AMIB

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[28,28,28] 2.790E-2 – 2.228E-3 – 27 0.648
[60,60,60] 1.727E-3 4.0138 1.126E-4 4.3062 22 3.383
[124,124,124] 3.680E-4 2.2307 1.098E-5 3.3589 52 51.735
[252,252,252] 3.903E-6 6.5587 3.610E-7 4.9264 52 385.434

Table 11
Example 8b – β+ = 10, β− = 1; Cylinder interface; mixed boundary conditions. The number 
of corner points is 0, 0, 0 and 0, respectively, for n =28, 60, 124, and 252.

[n,n,n] AMIB

L∞ L2 iter no. CPU time (s)

Error Order Error Order

[28,28,28] 1.147E-2 – 1.536E-3 – 32 0.792
[60,60,60] 7.840E-4 3.8709 1.126E-4 3.7699 39 6.081
[124,124,124] 6.348E-5 3.6263 7.655E-6 3.8791 83 85.114
[252,252,252] 2.919E-6 4.4428 4.056E-7 4.2383 144 1047.582

zone [17]. The mesh size for the entire domain D is taken as (n + 5) × (n + 5) × (n + 5). Two types of boundary conditions 
will be studied for this example, i.e., a simple Dirichlet condition and mixed conditions. For the mixed boundary value 
problem, a Robin boundary condition will be assumed on four sides of �2, while a Neumann boundary condition is used 
for the other two sides,

u + ∂u

∂n
= g1(x, y, z), on �1

2,�
3
2,�

4
2,�

6
2

∂u

∂n
= g2(x, y, z), on �5

2,�
2
2

where �n denotes the outward normal direction. The boundary data, such as g1(x, y, z) and g2(x, y, z), are determined by 
the analytical solution.

The numerical results of the proposed AMIB scheme are listed in Table 10 and Table 11, respectively, for the Dirichlet 
problem and mixed boundary problem. It can be observed that the AMIB scheme achieves fourth order of convergence in 
both cases. In case of the Dirichlet boundary condition, the iteration number of the AMIB scheme does not grow too much 
as the mesh is refined. Similar to the previous 2D study, because of the impact of Robin boundary conditions, the iteration 
number of the AMIB scheme becomes larger in the mixed problem. Nevertheless, the AMIB scheme still maintains a high 
efficiency for this challenging problem. In fact, even without the material interface �1, the numerical solution of elliptic 
boundary value problems with mixed boundary conditions is still a great challenge to other numerical methods. The AMIB 
scheme is the only known method that attains a fourth order accuracy and FFT efficiency [17,46].

3.3. Computational efficiency

In this subsection, the computational efficiency of the AMIB method for 3D elliptic interface problems will be further 
investigated. In our previous study [18], the Cartesian AMIB scheme for 2D elliptic interface problems can deliver a com-
putational complexity of O (n2 logn) on a n × n mesh. For 3D problems, our brief complexity analysis given at the end of 
Section 2 indicates that the proposed ray-casting AMIB scheme can maintain the O (n3 log n) efficiency of the FFT algorithm. 
Based on the computational time of the AMIB method reported in the 3D examples above, the complexity of AMIB method 
will be numerically quantified. Note that the mesh size is (n + 5) × (n + 5) × (n + 5) in Example 8, while in all other 3D 
examples, it is (n + 1) × (n + 1) × (n + 1). For simplicity, we regard the degree of freedom in each direction as n. The CPU 
time of the AMIB scheme is depicted against n in log-log scale in Fig. 14 for four examples. It can be seen that in all cases, 
the log-log plots are almost linear. A least squares fitting is conducted to compute a flop order r in O (nr) setting, and the 
corresponding order r is shown in the legend of each subfigure. From Fig. 14, it can be observed that the flop order r for 
the ray-casting AMIB method is slightly above 3. One can conclude that the computational cost of the AMIB method in 3D 
is roughly on the order of O (n3 log n).
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Fig. 14. Flops order in CPU time is examined for several 3D examples. The numerical flop order r is slightly larger than 3 in all examples.

4. Conclusion

In this work, we proposed a fast and fourth order accurate finite difference method to solve 3D elliptic interface prob-
lems. A novel ray-casting MIB scheme is proposed to generate fictitious values for treating a smoothly curved interface in 
two and three dimensions. Outside the boundary, two layers of zero-padding solutions are introduced, and the MIB bound-
ary closure scheme [57,17] is employed to generate fictitious values in dealing with Dirichlet, Neumann, Robin boundary 
conditions, and their mix combinations. Based on the fictitious values generated near interfaces and boundaries, a system-
atic approach is constructed to correct the fourth order central difference discretization of Laplacian operator, so that the 
discrete Laplacian can be efficiently inverted by the FFT Poisson solver. In the Schur complement solution of the augmented 
problem, the iteration number of the AMIB method only weakly depends on the mesh size n. Thus, the proposed ray-casting 
AMIB method not only achieves a fourth order of accuracy for complex interfaces and boundaries, but also delivers an over-
all complexity of O (n3 log n) on a n × n × n mesh. Moreover, with a little additional computation, the AMIB method can 
produce fourth order accurate approximation of solution gradients.

Comparing with the fourth order FFT-AMIB algorithm for 2D elliptic interface problems [18], the novelty of the present 
development lies in two aspects.

• First, the present AMIB scheme is based on a novel interface algorithm. In [18], the classical MIB scheme [60,54,55] is 
employed, in which the interface jump conditions are decomposed into Cartesian directions and the resulted Cartesian 
jump conditions are discretized simultaneously in all involved Cartesian directions. In the proposed ray-casting scheme, 
the jump conditions are simply discretized along the normal direction for fictitious value generation, and the involved 
auxiliary points are interpolated along 2D planes into grid nodes. Note that 2D interpolation/extrapolation is also needed 
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in the classical MIB scheme [60,54,55] after discretizing jump conditions. Thus, comparing with the classical MIB, the 
ray-casting MIB scheme is simpler and easier to implement in 3D. Moreover, because the normal direction makes it 
possible to reach more grid points inside/outside the interface, compared to the classical MIB, the ray-casting MIB 
scheme can handle more complicated geometry.

• Second, the corner issues are rigorously treated in the proposed AMIB method. As shown in our 2D computations, 
the existing AMIB method [18] fails when corner points are presented. Unfortunately, corner points are frequently 
encountered in 3D, so that the corner treatment becomes indispensable in solving 3D elliptic interface problems. In 
the proposed ray-casting MIB scheme, by using a sufficiently dense grid, the corner issue can be naturally bypassed, 
because the normal line locally will not cut the interface for a second time. In correcting the fourth order central 
difference, all corner cases have been examined, and the corresponding correcting formulas involving multiple interface 
cuts have been developed in the proposed ray-casting AMIB scheme. Therefore, the ray-casting AMIB scheme becomes 
more robust than the previous AMIB scheme [18].

In the future, the extension of the proposed ray-casting AMIB method to more challenging interface problems will be 
explored. Similar to the classical MIB scheme [60,54,55] and the existing AMIB scheme [16–18,46,35], the ray-casting AMIB 
scheme is independent of the governing PDE. This will allow us to generalize the ray-casting AMIB algorithm for solving 
parabolic and hyperbolic PDE interface problems. The parallelization is a challenging issue for the ray-casting AMIB scheme, 
because a fictitious value is related to many surrounding grid points. For a domain-decomposition type parallelization, the 
partition of the grid could be cumbersome, because a lot of communication processes are needed. Alternative approaches 
have to be explored for the parallelization.
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