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The Poisson-Boltzmann (PB) equation governing the electrostatic potential with a unit is often 
transformed to a normalized form for a dimensionless potential in numerical studies. To calculate 
the electrostatic free energy (EFE) of biological interests, a unit conversion has to be conducted, 
because the existing PB energy functionals are all described in terms of the original potential. 
To bypass this conversion, this paper proposes energy functionals in terms of the dimensionless 
potential for the first time in the literature, so that the normalized PB equation can be directly 
derived by using the Euler-Lagrange variational analysis. Moreover, alternative energy forms 
have been rigorously derived to avoid approximating the gradient of singular functions in the 
electrostatic stress term. A systematic study has been carried out to examine the surface integrals 
involved in alternative energy forms and their dependence on finite domain size and mesh step 
size, which leads to a recommendation on the EFE forms for efficient computation of protein 
systems. The calculation of the EFE in the regularization formulation, which is an analytical 
approach for treating singular charge sources of the PB equation, has also been studied. The 
proposed energy forms have been validated by considering smooth dielectric settings, such as 
diffuse interface and super-Gaussian, for which the EFE of the nonlinear PB model is found to 
be significantly different from that of the linearized PB model. All proposed energy functionals 
and EFE forms are designed such that the dimensionless potential can be simply plugged in to 
compute the EFE in the unit of kcal/mol, and they can also be applied in the classical sharp 
interface PB model.

1. Introduction

Electrostatic analysis is of central importance in the atomic scale description of solvated biomolecular processes, by studying 
interactions between charged solutes such as proteins, DNAs and RNAs, and mobile ions contained in the solvent. The Poisson-
Boltzmann (PB) model [4,23,38] is one of the most popular implicit solvent models, in which the solute and solvent are treated as 
dielectric continuum and the mobile ions are assumed to follow the Boltzmann distribution in water. Based on rigorous biophysical 
theories, the PB theory formulates the electrostatic potential via a nonlinear elliptic partial differential equation (PDE), known as the 
nonlinear PB (NPB) equation [4,23,38]. The NPB equation can be linearized by replacing the nonlinear term with the leading term 
in the Taylor series expansion, giving rise to the linearized PB (LPB) equation.
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A modern approach for deriving the PB equation is using the variational analysis of a properly defined electrostatic energy 
functional [32,38]. For a full nonlinear PB model, this energy functional includes terms for interaction energy between charges, 
electrostatic stress, and excess osmotic pressure of the mobile ions [4,38]. Mathematically, the energy optimization can be ac-
complished with the Euler-Lagrange variation, which yields the classical PB equation. In the classical setting, a sharp interface is 
commonly assumed at the solute-solvent boundary, which splits the domain into two subdomains, i.e., the solute region with a low 
dielectric constant and the water region with a high dielectric constant. The variational analysis provides a physically sound and 
mathematically convenient approach for generalizing the PB model to incorporate more physical insights, through simply modifying 
terms or introducing new terms in the energy functional or coupling the polar energy with nonpolar energy in solvation analysis 
[11,12,16,24,42,45–47,49]. Many of such improved PB models feature a smooth solute-solvent boundary, i.e., the dielectric function 
varies smoothly from the macromolecule to the solvent over a narrow band [11,12,16,42,46,47,49]. When the solute and solvent are 
still assumed to be two homogeneous dielectric media away from the smooth solute-solvent boundary, the corresponding PB models 
can be referred to as diffuse interface PB models [1,5,6,13,16,36,39,49]. Furthermore, many heterogeneous dielectric PB models 
[7,21,28,29,35] have been developed to represent the dielectric distribution of the solute as a space dependent function. In partic-
ular, this work will use the super-Gaussian PB model [21] to illustrate the proposed energy functionals, in which super-Gaussian 
dielectric distributions are assumed for the solute to mimic the effect of random conformational changes of the macromolecule on 
the solvation free energy. The super-Gaussian PB model allows one to capture an ensemble averaged electrostatic free energy by 
using a single protein structure [35].

Numerous studies have been devoted to developing accurate, efficient, and robust numerical algorithms for solving the PB equa-
tion in the literature [8,9,15,17,19,22,23,25,27,31,33,38,43,44]. For the convenience of numerical algorithm development, the PB 
equation governing the electrostatic potential with a unit is commonly transformed to a normalized form for a dimensionless poten-
tial [2,8,19,20,22,26]. In order to calculate the electrostatic free energy, after solving the normalized PB equation, one has to convert 
the dimensionless potential back to the original potential, and calculate the free energy according to the original energy functional. 
Such a process is inconvenient and may introduce additional numerical artifact when improper unit conversion coefficients are 
used. It is highly desired if the energy functional is formulated in terms of the dimensionless potential. However, to the best of our 
acknowledge, no energy functional in terms of the dimensionless potential has been introduced in the PB literature.

The main objective of this work is to formulate an energy functional in terms of the dimensionless potential, so that the normalized 
PB equation can be directly derived by using the Euler-Lagrange equation. Moreover, by clarifying all necessary parameters and their 
units, we will present energy forms that can be used to compute the electrostatic free energy directly based on the numerically 
obtained dimensionless potential. Note that the electrostatic free energy measures the difference in the polar solvation energy of 
the macromolecule between the water phase and vacuum phase [4,23]. Thus, by definition, the electrostatic free energy can be 
calculated based on the energy functional of the potential in water phase minus that of the potential in vacuum phase. However, in 
practice, the electrostatic free energy is never computed via the definition. Instead, alternative energy forms without the electrostatic 
stress term are commonly employed, which avoids approximating the gradient of singular functions in the electrostatic stress term. 
These alternative energy terms could be obtained by using an integral form of Gauss’s law [3,37] or using an equivalent optimization 
form [32]. In the present study, we will rigorously derive the alternative energy form in the dimensionless potential and justify its 
numerical advantages.

With the proposed free energy functionals, we will investigate the dependence of each energy term on the domain size and mesh 
step size. In particular, the alternative free energy form will involve surface integrals when the underlying domain is a finite one. 
Such surface integrals are often neglected in most computations, but are taken into account in some studies [32]. An associated 
issue here is that the PB model is originally defined over an infinite domain with a vanishing electrostatic potential at infinity. 
Nevertheless, in most grid based numerical algorithms, including finite element methods [17,22,44] and finite difference methods 
[8,15,19,23,25,27,33,38], a finite domain has to be used, which requires an appropriate boundary condition. For most protein 
studies, a Dirichlet boundary condition is commonly assumed, which provides a fairly accurate Debye-Huckel approximation to the 
analytical solution of the LPB potential [22]. In the present study, we will conduct a systematic study on volume and surface integrals 
in the free energy forms to recommend that whether the surface integrals shall be kept in computing the electrostatic free energy 
over a finite domain.

The singular charge source of the PB equation is known to be a significant challenge for both mathematical analysis and numerical 
computation of the PB model [10,22,44]. In the PB model, the partial charges carried by the macromolecule are expressed as Dirac 
delta distributions, and their summation forms a singular source term. In the conventional finite difference method, a trilinear method 
is commonly used by distributing the singular charges to the neighboring grid nodes with finite values [34]. The trilinear method 
is known to be inaccurate, because one essentially approximates an unbounded potential solution by finite numerical numbers. A 
modern approach for treating PB charge singularity is using regularization methods, in which the singularity is analytically captured 
via the Green’s functions [10,14,19,20,44,50]. Recently, a unified regularization approach has been developed for treating singular 
charges in the diffuse interface PB model [36,39,40] and heterogeneous dielectric PB model [41]. In the present study, we will 
investigate how the singularities in the potential solution could affect the calculation of the electrostatic free energy. Moreover, 
the calculation of the electrostatic free energy in the regularization formulation will be discussed. Because the interaction energy 
between charges can be calculated using the reaction field potential, instead of the original potential, the proposed free energy form 
in the regularization could be free of singularities.

In this work, the PB model and its normalized form will be presented in a general setting, such that the proposed energy forms can 
be generalized to other PB models. Even though the proposed energy forms will be validated primarily by using the super-Gaussian 
2

PB model, they can be applied to other PB models, including sharp interface PB model, diffuse interface PB model, and so on. In 
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Fig. 1. (a). The subdomain setting of the solute-solvent system. (b). The subdomains are characterized by a diffuse interface function 𝑆(𝐫), which is plotted along a 
straight line. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

particular, the parameters and units of each energy term will be clarified. It should be no problem for readers to generalize the 
present energy forms to other PB models based on the dimensionless potential.

The rest of the paper is structured with the following sections. In Section 2, we first propose the energy functional in terms of 
the dimensionless potential for both NPB and LPB models. Variational analysis is conducted to derive the corresponding NPB and 
LPB equations. Next, the energy forms for calculating the electrostatic free energy will be derived, and regularized versions will be 
offered. We then provide details of the PB models to be tested and numerical algorithms. In Section 3, the proposed energy forms 
will be validated by considering both trilinear and regularization methods for singular charges, and by studying both LPB and NPB 
models. Macromolecules and proteins will be considered for evaluating volume and surface integrals. Finally, in Section 4, a brief 
discussion is offered.

2. Theory and algorithm

2.1. Biological problem and mathematical setting

Consider a solute macromolecule, for example, a protein being immersed in an aqueous solvent. Assume that the bulk concen-
trations of both univalent positive and negative ions are the same, and follow the Boltzmann distribution in the solvent. In many 
implicit solvent models, a smooth solute-solvent boundary is often assumed to separate the solute and solvent regions. Define a 
large enough domain Ω ⊂ ℝ3 containing this solute-solvent system, which consists of three regions: an interior domain Ω𝑖 for the 
solute, an exterior domain Ω𝑒 for the solvent, and a transition layer Ω𝑡 in between Ω𝑖 and Ω𝑒 as the smooth solute-solvent boundary. 
Denote the interface between Ω𝑖 and Ω𝑡 as Γ𝑖, while that between Ω𝑡 and Ω𝑒 as Γ𝑒. An illustration of subdomains is shown in Fig. 1
(a). In the present paper, we assume that a diffuse interface or smooth surface function 𝑆(𝐫) has been defined to characterize the 
subdomains, i.e., 𝑆(𝐫) equals to one and zero, respectively, in Ω𝑖 and Ω𝑒, while in Ω𝑡, as one travels from the interior protein to the 
exterior solvent, 𝑆(𝐫) decays from one to zero. See Fig. 1 (b) for an illustration of a 𝑆(𝐫) function. Based on 𝑆(𝐫), a smooth dielectric 
function 𝜖(𝐫) can be defined over the entire domain Ω, for example, by using the diffuse interface [39] and super-Gaussian [21,41]
models. The details on the definition of 𝑆(𝐫) and 𝜖(𝐫) for different dielectric models will be offered later in this section. Without the 
loss of generality, we assume that both 𝑆(𝐫) and 𝜖(𝐫) are at least 𝐶2 continuous over the entire domain Ω. Note that both 𝑆(𝐫) and 
𝜖(𝐫) are dimensionless.

2.2. Electrostatic energy functionals

It is well known that the Poisson-Boltzmann (PB) equation can be derived based on variational analysis of an energy functional. 
In the PB literature [3,32,37,46], the electrostatic energy is usually defined as a functional of the electrostatic potential 𝜙 with a unit, 
e.g., 𝑒𝑐∕Å, where 𝑒𝑐 is the fundamental charge and Å is the angstrom. On the other hand, in mathematical and numerical studies of 

the PB equation, a dimensionless potential 𝑢 is commonly used, where 𝑢 =
𝑒𝑐𝜙

𝑘𝐵𝑇
[22]. Here 𝑘𝐵 is the Boltzmann constant and 𝑇 is the 

temperature. Note that the unit of 𝑒𝑐𝜙 is 𝑒2
𝑐
∕Å. We know that 𝑘𝐵𝑇 = 0.5961634386 kcal/mol and 𝑒2

𝑐
∕Å = 332.06364 kcal/mol [22]. 

Hence, 𝑢 is a dimensionless quantity without a unit. Physically speaking, the numerator 𝑒𝑐𝜙 and denominator 𝑘𝐵𝑇 in the definition 
of 𝑢 can be regarded as an electrostatic energy and thermal energy, respectively. Thus, from the physics point of view, 𝑢 is an energy 
fraction, and is not an electrostatic potential. Nevertheless, we will still call 𝑢 as the dimensionless potential in this work, following 
the mathematical studies in the PB literature [22].

To the best of our knowledge, no PB energy functional has been prescribed in terms of the dimensionless potential 𝑢 in the 
literature. Thus, after solving 𝑢, one has to convert 𝑢 back to 𝜙 for calculating the energy, which may introduce some numerical 
artifacts when the unit constants are not chosen properly. To avoid such problems, we propose the following PB energy functional in 
3

terms of 𝑢,
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𝐸[𝑢] ∶= ∫
Ω

𝑘𝐵𝑇

𝑒𝑐

𝑁𝑚∑
𝑗=1
𝑞𝑗𝑒𝑐𝛿(𝐫 − 𝐫𝑗 )𝑢(𝐫)𝑑𝐫 −

1
4𝜋 ∫

Ω

(𝑘𝐵𝑇 )2

𝑒2
𝑐

𝜖(𝐫)
2

|∇𝑢(𝐫)|2𝑑𝐫 − 1
4𝜋 ∫

Ω

(𝑘𝐵𝑇 )2

𝑒2
𝑐

(1 −𝑆(𝐫))𝜅2(cosh(𝑢(𝐫)) − 1)𝑑𝐫. (1)

The first term of Eq. (1) represents the polar energy of inserting the partial charges of the solute into the electrostatic potential 
[3,37]. Here, we assume the protein contains 𝑁𝑚 atoms, with partial charges 𝑞𝑗 in terms of the fundamental charge 𝑒𝑐 located at the 
atom centers 𝐫𝑗 for 𝑗 = 1, 2, … , 𝑁𝑚, and 𝛿(𝐫 − 𝐫𝑗 ) is the Dirac delta function. The second term is the electrostatic stress, or energy of 
polarization for the dielectric medium [3,37]. The third term is the excess osmotic pressure of the mobile ions, or the energy of the 

mobile counterion distribution [3,37]. Here 𝜅 is the modified Debye-Hückel parameter with 𝜅2 =
(

2𝑁𝐴𝑒2𝑐
100𝑘𝐵𝑇

)
𝐼 = 8.486902807Å−2𝐼 , 

where 𝑁𝐴 is the Avogadro’s Number and the dimensionless number 𝐼 is the molar strength of the ionic solution [22]. Thus, the unit 
of 𝜅2 is Å−2.

It is noted that the energy form (1) is designed such that one can simply plug in the numerical potential 𝑢 to calculate 𝐸[𝑢] in the 
unit of kcal/mol without additional conversions. To see this, Eq. (1) can be rewritten into an equivalent form

𝐸[𝑢] ∶= 𝑘𝐵𝑇 ∫
Ω

𝑁𝑚∑
𝑗=1
𝑞𝑗𝛿(𝐫 − 𝐫𝑗 )𝑢(𝐫)𝑑𝐫 −

𝑘𝐵𝑇

4𝜋
𝑘𝐵𝑇

𝑒2
𝑐
∕Å ∫

Ω

1
Å

𝜖(𝐫)
2

|∇𝑢(𝐫)|2𝑑𝐫 − 𝑘𝐵𝑇
4𝜋

𝑘𝐵𝑇

𝑒2
𝑐
∕Å ∫

Ω

1
Å
(1 −𝑆(𝐫))𝜅2(cosh(𝑢(𝐫)) − 1)𝑑𝐫. (2)

In all integrals of Eq. (2), 𝛿(𝐫 − 𝐫𝑗 ), |∇𝑢|2, and 𝜅2 has a unit of Å−3, Å−2, and Å−2, respectively. Thus all integrals are dimensionless 
after integration. The fraction 𝑘𝐵𝑇

𝑒2𝑐∕Å
is also dimensionless. Hence, the units of all terms are determined by 𝑘𝐵𝑇 = 0.5961634386

kcal/mol. The scaling of the constant 1∕4𝜋 in second and third terms is to conform to the usual electrostatic convention [37].
When the dimensionless potential 𝑢 is weak, a linearized energy functional can be used

𝐸[𝑢] ∶= ∫
Ω

𝑘𝐵𝑇

𝑒𝑐

𝑁𝑚∑
𝑗=1
𝑞𝑗𝑒𝑐𝛿(𝐫 − 𝐫𝑗 )𝑢(𝐫)𝑑𝐫 −

1
4𝜋 ∫

Ω

(𝑘𝐵𝑇 )2

𝑒2
𝑐

𝜖(𝐫)
2

|∇𝑢(𝐫)|2𝑑𝐫 − 1
4𝜋 ∫

Ω

(𝑘𝐵𝑇 )2

𝑒2
𝑐

(1 −𝑆(𝐫))𝜅2 𝑢
2(𝐫)
2
𝑑𝐫, (3)

which is obtained by approximating (cosh(𝑢) − 1) in Eq. (1) by its leading term in the Taylor series expansion, i.e., 𝑢2∕2.
In order to calculate the free energy, the electrostatic energy of the same protein system in the vacuum state is needed. As in 

other PB models, we can assume the partial charges carried by the protein and the function 𝑆(𝐫) characterizing the molecular surface 
being the same in the vacuum state. Denote the dielectric function in the vacuum state as 𝜖𝑣(𝐫). For both the diffuse interface [39]
and super-Gaussian [21,41] models, we have 𝜖𝑣(𝐫) = 𝜖(𝐫) in Ω𝑖 and 𝜖𝑣(𝐫) = 1 in Ω𝑒. Again, 𝜖𝑣(𝐫) is dimensionless and is at least 𝐶2

continuous over Ω. Denote the dimensionless potential as 𝑣 in the vacuum state. The energy functional in the vacuum is given as

𝐸[𝑣] ∶= ∫
Ω

𝑘𝐵𝑇

𝑒𝑐

𝑁𝑚∑
𝑗=1
𝑞𝑗𝑒𝑐𝛿(𝐫 − 𝐫𝑗 )𝑣(𝐫)𝑑𝐫 −

1
4𝜋 ∫

Ω

(𝑘𝐵𝑇 )2

𝑒2
𝑐

𝜖𝑣(𝐫)
2

|∇𝑣(𝐫)|2𝑑𝐫. (4)

Because no mobile ions are involved in the vacuum, the excess osmotic pressure term is not presented in Eq. (4), while the other two 
terms are formulated similarly as in Eq. (1).

2.3. Variational analysis and governing equations

The governing equation of the dimensionless potential 𝑢 for the present solute-solvent system can be derived based on the 
variational analysis. In particular, the Euler-Lagrange equation of the energy functional 𝐸[𝑢] in Eq. (1) gives rise to

− 1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∇ ⋅ (𝜖∇𝑢) + 1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

(1 −𝑆)𝜅2 sinh(𝑢) =
𝑘𝐵𝑇

𝑒𝑐

𝑁𝑚∑
𝑗=1
𝑞𝑗𝑒𝑐𝛿(𝐫 − 𝐫𝑗 ). (5)

Through a proper rescaling for both left and right sides of Eq. (5), we arrive at the commonly used nonlinear PB (NPB) equation for 
the dimensionless potential 𝑢 [21,41]

−∇ ⋅ (𝜖(𝐫)∇𝑢(𝐫)) + (1 −𝑆(𝐫))𝜅2 sinh(𝑢(𝐫)) = 4𝜋
𝑒2
𝑐

𝑘𝐵𝑇

𝑁𝑚∑
𝑗=1
𝑞𝑗𝛿(𝐫 − 𝐫𝑗 ), 𝐫 ∈Ω. (6)

Similarly, the variational analysis of the linearized functional in Eq. (3) yields the linearized PB (LPB) equation [21,41]

−∇ ⋅ (𝜖(𝐫)∇𝑢(𝐫)) + (1 −𝑆(𝐫))𝜅2𝑢(𝐫) = 4𝜋
𝑒2
𝑐

𝑘𝐵𝑇

𝑁𝑚∑
𝑗=1
𝑞𝑗𝛿(𝐫 − 𝐫𝑗 ), 𝐫 ∈Ω. (7)

Finally, in the vacuum state, the energy functional 𝐸[𝑣] leads to a Poisson equation for 𝑣 [21,41]

−∇ ⋅ (𝜖 (𝐫)∇𝑣(𝐫)) = 4𝜋
𝑒2
𝑐

𝑁𝑚∑
𝑞 𝛿(𝐫 − 𝐫 ), 𝐫 ∈Ω. (8)
4

𝑣
𝑘𝐵𝑇 𝑗=1

𝑗 𝑗
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In numerical solution of the PB equations, a Dirichlet boundary condition is commonly used on the outer boundary of the domain 
Ω, i.e., 𝜕Ω. Assume that the domain Ω is large enough, so that the dielectric function 𝜖(𝐫) equals to a constant 𝜖𝑜𝑢𝑡 on 𝜕Ω. The 
following Dirichlet boundary data can be assumed [22]

𝑏(𝐫; 𝜖𝑜𝑢𝑡) ∶=
𝑒𝑐

2

𝑘𝐵𝑇

𝑁𝑚∑
𝑗=1

𝑞𝑗

𝜖𝑜𝑢𝑡|𝐫 − 𝐫𝑗 | 𝑒−|𝐫−𝐫𝑗 |
√

𝜅2
𝜖𝑜𝑢𝑡 , on 𝜕Ω. (9)

For a sufficiently large domain, 𝑏(𝐫; 𝜖𝑜𝑢𝑡) provides a fairly accurate Debye-Huckel approximation to the analytical solution of the LPB 
potential on 𝜕Ω [22]. In the present study, both the NPB equation (6) and LPB equation (7) will be paired with a Dirichlet boundary 
condition for 𝑢(𝐫) with 𝜖𝑜𝑢𝑡 = 80, while the Poisson equation is paired with a condition for 𝑣(𝐫) with 𝜖𝑜𝑢𝑡 = 1

𝑢(𝐫) = 𝑢𝑏(𝐫) ∶= 𝑏(𝐫; 80) and 𝑣(𝐫) = 𝑣𝑏(𝐫) ∶= 𝑏(𝐫; 1), 𝐫 ∈ 𝜕Ω. (10)

Mathematically, since the charge sources are singular, i.e., 𝛿(𝐫 − 𝐫𝑗 ) →∞ as 𝐫 approaches to 𝐫𝑗 for all atomic centers, the potentials 
of the NPB equation (6), LPB equation (7), and Poisson equation (8) all blow up at charge centers [41]. This singularity is a well 
known numerical difficulty in solving the PB equation [20,41]. The impact of charge singularities to the free energy calculation will 
be discussed later.

2.4. Electrostatic free energy

After solving either the NPB or LPB equation for 𝑢 and Poisson’s equation for 𝑣, one can then calculate the electrostatic free 
energy based on the definition Δ𝐸 =𝐸[𝑢] −𝐸[𝑣]. By directly using the above energy functionals, the electrostatic free energy of the 
NPB model can be defined as

Δ𝐸 =𝐸[𝑢] −𝐸[𝑣]

=∫
Ω

𝑘𝐵𝑇

𝑁𝑚∑
𝑗=1
𝑞𝑗𝛿(𝐫 − 𝐫𝑗 )(𝑢(𝐫) − 𝑣(𝐫))𝑑𝐫 −

1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

(
𝜖(𝐫)
2

|∇𝑢(𝐫)|2 − 𝜖𝑣(𝐫)
2

|∇𝑣(𝐫)|2)𝑑𝐫
− 1

4𝜋
(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

(1 −𝑆(𝐫))𝜅2(cosh(𝑢(𝐫)) − 1)𝑑𝐫,

=𝑘𝐵𝑇
𝑁𝑚∑
𝑗=1
𝑞𝑗 (𝑢(𝐫𝑗 ) − 𝑣(𝐫𝑗 )) −

1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

(
𝜖(𝐫)
2

|∇𝑢(𝐫)|2 − 𝜖𝑣(𝐫)
2

|∇𝑣(𝐫)|2)𝑑𝐫
− 1

4𝜋
(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

(1 −𝑆(𝐫))𝜅2(cosh(𝑢(𝐫)) − 1)𝑑𝐫, (11)

in which the property of the Dirac delta function has been applied to evaluate the first integral.
However, Eq. (11) is seldom used in practice. Theoretically, 𝑢(𝐫𝑗 ) and 𝑣(𝐫𝑗 ) go to infinity for any charge center 𝐫𝑗 ∈Ω𝑖. Numeri-

cally, the approximated values of 𝑢(𝐫𝑗 ) and 𝑣(𝐫𝑗 ) generated by a numerical algorithm are still finite, but involve huge approximation 
errors. When the same algorithm and the same numerical grid are employed to solve 𝑢 and 𝑣, it is known [3,41] that errors in 
approximating singular 𝑢 and 𝑣 are almost the same at 𝐫𝑗 , so that such errors can be canceled in calculating 𝑢(𝐫𝑗 ) − 𝑣(𝐫𝑗 ) in Eq. (11). 
Consequently, the approximated value for the first term of Eq. (11) is still acceptable, and this is known as the reduction of artificial 
grid energy in the PB literature [3,41]. Nevertheless, the approximations in the second term are more troublesome, because the 
gradients of the singular functions 𝑢 and 𝑣 need to be approximated near charge centers in the electrostatic stress term.

To avoid using the second term in Eq. (11) for calculating Δ𝐸, alternative energy forms are usually considered in the literature, 
such as using an integral form of Gauss’s law [3,37] or using an equivalent variational form [32]. In the present study, we will 
propose an alternative energy form in terms of the dimensionless potentials 𝑢 and 𝑣, which is computationally better than Eq. (11). 
Also, a rigorous mathematical derivation is offered below. To this end, we multiply both hand sides of the NPB equation (5) by 𝑢 and 
integrate over the entire domain Ω. We then have

∫
Ω

𝑘𝐵𝑇

𝑒𝑐

𝑁𝑚∑
𝑗=1
𝑞𝑗𝑒𝑐𝛿(𝐫 − 𝐫𝑗 )𝑢(𝐫)𝑑𝐫

=− 1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

∇ ⋅ (𝜖∇𝑢)𝑢𝑑𝐫 + 1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

(1 −𝑆)𝜅2𝑢 sinh(𝑢)𝑑𝐫

= 1 (𝑘𝐵𝑇 )2 (1 −𝑆)𝜅2𝑢 sinh(𝑢)𝑑𝐫 − 1 (𝑘𝐵𝑇 )2
⎡⎢ 𝑢𝑑(𝜖∇𝑢)

⎤⎥

5

4𝜋 𝑒2
𝑐

∫
Ω

4𝜋 𝑒2
𝑐

⎢⎣∫Ω ⎥⎦
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= 1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

(1 −𝑆)𝜅2𝑢 sinh(𝑢)𝑑𝐫 − 1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

⎡⎢⎢⎣∫𝜕Ω 𝑢𝜖∇𝑢 ⋅ 𝐧𝑑𝑠− ∫
Ω

𝜖∇𝑢 ⋅∇𝑢𝑑𝐫
⎤⎥⎥⎦ ,

= 1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

(1 −𝑆)𝜅2𝑢 sinh(𝑢)𝑑𝐫 + 1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

𝜖|∇𝑢|2𝑑𝐫 − 1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
𝜕Ω

𝜖𝑢
𝜕𝑢

𝜕𝑛
𝑑𝑠, (12)

in which the divergence theorem has been applied to produce a surface integral on 𝜕Ω. Here 𝐧 is the outward normal direction of 
𝜕Ω, and 𝜕𝑢

𝜕𝑛
is the directional derivative along the normal direction. By expressing the electrostatic stress term in terms of the others, 

Eq. (12) can be rewritten as

1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

𝜖

2
|∇𝑢|2𝑑𝐫 = ∫

Ω

𝑘𝐵𝑇

𝑒𝑐

𝑁𝑚∑
𝑗=1

1
2
𝑞𝑗𝑒𝑐𝛿(𝐫 − 𝐫𝑗 )𝑢(𝐫)𝑑𝐫

− 1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

1
2
(1 −𝑆)𝜅2𝑢 sinh(𝑢)𝑑𝐫 + 1

4𝜋
(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
𝜕Ω

1
2
𝜖𝑢
𝜕𝑢

𝜕𝑛
𝑑𝑠. (13)

By plugging Eq. (13) into Eq. (1), we can eliminate the electrostatic stress term in the alternative form of the NPB energy functional

𝐸[𝑢] =
𝑘𝐵𝑇

𝑒𝑐

1
2 ∫

Ω

𝑁𝑚∑
𝑗=1
𝑞𝑗𝑒𝑐𝛿(𝐫 − 𝐫𝑗 )𝑢(𝐫)𝑑𝐫 −

1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

(1 −𝑆(𝐫))𝜅2(cosh(𝑢(𝐫)) − 1)𝑑𝐫

+ 1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

1
2 ∫

Ω

(1 −𝑆)𝜅2𝑢 sinh(𝑢)𝑑𝐫 − 1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

1
2 ∫
𝜕Ω

𝜖𝑢
𝜕𝑢

𝜕𝑛
𝑑𝑠, (14)

Similarly, we multiply both hand sides of the Poisson equation (8) by 𝑣 and integrate over the entire domain Ω. This yields the 
following expression for the electrostatic stress term

1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω

𝜖𝑣

2
|∇𝑣|2𝑑𝐫 = ∫

Ω

𝑘𝐵𝑇

𝑒𝑐

𝑁𝑚∑
𝑗=1

1
2
𝑞𝑗𝑒𝑐𝛿(𝐫 − 𝐫𝑗 )𝑣(𝐫)𝑑𝐫 +

1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
𝜕Ω

1
2
𝜖𝑣𝑣

𝜕𝑣

𝜕𝑛
𝑑𝑠. (15)

By substituting Eq. (15) into Eq. (4), the energy functional 𝐸[𝑣] can be rewritten as

𝐸[𝑣] =
𝑘𝐵𝑇

𝑒𝑐

1
2 ∫

Ω

𝑁𝑚∑
𝑗=1
𝑞𝑗𝑒𝑐𝛿(𝐫 − 𝐫𝑗 )𝑣(𝐫)𝑑𝐫 −

1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

1
2 ∫
𝜕Ω

𝜖𝑣𝑣
𝜕𝑣

𝜕𝑛
𝑑𝑠. (16)

Therefore, the electrostatic free energy Δ𝐸 =𝐸[𝑢] −𝐸[𝑣] for the NPB model can be calculated as

Δ𝐸 =1
2
𝑘𝐵𝑇

𝑁𝑚∑
𝑗=1
𝑞𝑗 (𝑢(𝐫𝑗 ) − 𝑣(𝐫𝑗 )) −

1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω𝐶
𝑖

(1 −𝑆)𝜅2(cosh(𝑢) − 1)𝑑𝐫

+ 1
8𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω𝐶
𝑖

(1 −𝑆)𝜅2𝑢 sinh(𝑢)𝑑𝐫 − 1
8𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
𝜕Ω

(
𝜖𝑢
𝜕𝑢

𝜕𝑛
− 𝜖𝑣𝑣

𝜕𝑣

𝜕𝑛

)
𝑑𝑠. (17)

In the present study, because 1 − 𝑆 = 0 in Ω𝑖, we have replaced the integral domain Ω of two volume integrals in Eq. (17) by the 
complement set of Ω𝑖, i.e., Ω𝐶

𝑖
= Ω𝑡 ∪ Ω𝑒. Thus, two volume integrals are no longer singular, because the potential 𝑢 is a smooth 

function away from singular charges or outside Ω𝑖. The only singular term in (17) is the first term. Nevertheless, the artificial 
grid energy will be reduced in evaluating 𝑢(𝐫𝑗 ) − 𝑣(𝐫𝑗 ), as mentioned above. Therefore, the electrostatic free energy Δ𝐸 calculated 
by Eq. (17) will be more accurate than that by Eq. (11). The similar derivation can be carried out for the LPB model, and the 
corresponding electrostatic free energy is given as

Δ𝐸 = 1
2
𝑘𝐵𝑇

𝑁𝑚∑
𝑗=1
𝑞𝑗 (𝑢(𝐫𝑗 ) − 𝑣(𝐫𝑗 )) −

1
8𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
𝜕Ω

(
𝜖𝑢
𝜕𝑢

𝜕𝑛
− 𝜖𝑣𝑣

𝜕𝑣

𝜕𝑛

)
𝑑𝑠. (18)

We note that unlike the original form Eq. (11), the alternative free energy forms Eq. (17) and Eq. (18) involve surface integrals.

2.5. Regularization formulation

In traditional numerical studies, the singular charge sources involved in the governing equations (6), (7), and (8) are directly 
6

discretized in grid based computations. In the finite difference algorithm, a trilinear method is commonly used, in which the singular 
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charges are distributed to the neighboring grid nodes with finite values [34]. However, the trilinear method is doomed to be inaccu-
rate, because one actually attempts to approximate an unbounded potential function by finite numerical values. A modern approach 
to analytically handle the singular charges is using the regularization methods, which were first introduced for solving two-dielectric 
PB models with sharp interfaces [10,14,20,26,50]. For PB models with diffuse interface or heterogeneous dielectric functions, a 
breakthrough has been reported recently by introducing a unified regularization approach [36,39–41]. A brief introduction to such 
a regularization will be given in this subsection, and we refer the readers to the original works [36,39–41] and the reference therein 
for more details.

In [36,39–41], a two-component decomposition is considered for the potential 𝑢 of the NPB equation (6)

𝑢(𝐫) = 𝑢𝐶 (𝐫) + 𝑢𝑅𝐹 (𝐫), 𝐫 ∈Ω, (19)

where 𝑢𝐶 is the Coulomb potential and 𝑢𝑅𝐹 is the reaction field potential. To capture the singularity in the potential function, the 
Coulomb potential 𝑢𝐶 is assumed to satisfy a homogeneous Poisson’s equation with the same singular source over 𝑅3 ,

⎧⎪⎨⎪⎩
−𝜖𝑚Δ𝑢𝐶 (𝐫) = 4𝜋 𝑒2𝑐

𝑘𝐵𝑇

∑𝑁𝑚
𝑗=1 𝑞𝑗𝛿(𝐫 − 𝐫𝑗 ) in 𝑅3,

𝑢𝐶 (𝐫) = 0 as |𝐫|→∞,
(20)

where 𝜖𝑚 is the dielectric constant of the molecule. For diffuse interface PB models [36,39,40], we have 𝜖(𝐫) = 𝜖𝑚 for 𝐫 ∈Ω𝑖, while for 
super-Gaussian dielectric model [21,41], 𝜖𝑚 is the minimal value of 𝜖(𝐫) in Ω𝑖. Equation (20) has a fundamental solution analytically, 
i.e., the singular component 𝑢𝐶 is actually the Green’s function 𝐺(𝐫)

𝑢𝐶 (𝐫) =𝐺(𝐫) ∶=
𝑒2
𝑐

𝑘𝐵𝑇

𝑁𝑚∑
𝑗=1

𝑞𝑗

𝜖𝑚|𝐫 − 𝐫𝑗 | . (21)

Through a rigorous mathematical analysis, the reaction field potential can be shown to satisfy a regularized NPB equation for 
both diffuse interface and super-Gaussian models [36,39–41]{

−∇ ⋅ (𝜖(𝐫)∇𝑢𝑅𝐹 (𝐫)) + (1 −𝑆(𝐫))𝜅2 sinh(𝑢𝑅𝐹 (𝐫) +𝐺(𝐫)) =∇𝜖(𝐫) ⋅∇𝐺(𝐫) in Ω,

𝑢𝑅𝐹 (𝐫) =𝑢𝑏(𝐫) −𝐺(𝐫) on 𝜕Ω.
(22)

Essentially, the singular charge source is replaced by a new source ∇𝜖 ⋅ ∇𝐺, which is bounded and smooth in Ω under proper 
conditions [41]. Here, the gradient of Green’s function is also analytically known

∇𝐺(𝐫) = −
𝑒2
𝑐

𝑘𝐵𝑇

𝑁𝑚∑
𝑗=1

𝑞𝑗 (𝐫 − 𝐫𝑗 )
𝜖𝑚|𝐫 − 𝐫𝑗 |3 , (23)

while the gradient of 𝜖(𝐫) shall be calculated numerically. The solution existence and uniqueness of the regularized NPB model have 
been proved in [41].

In the previous works of the regularization for PB models with diffuse interface or heterogeneous dielectric functions [36,39–41], 
the numerical solution of the regularized NPB equation (22) has not been studied before. Only the linearized versions have been 
explored. For the LPB equation (7), we consider the same decomposition 𝑢 = 𝑢𝑅𝐹 + 𝑢𝐶 = 𝑢𝑅𝐹 +𝐺. Then the reaction field potential 
𝑢𝑅𝐹 satisfies a regularized LPB equation{

−∇ ⋅ (𝜖(𝐫)∇𝑢𝑅𝐹 (𝐫)) + (1 −𝑆(𝐫))𝜅2𝑢𝑅𝐹 (𝐫) =∇𝜖(𝐫) ⋅∇𝐺(𝐫) − (1 −𝑆(𝐫))𝜅2𝐺(𝐫), in Ω,

𝑢𝑅𝐹 (𝐫) =𝑢𝑏(𝐫) −𝐺(𝐫) on 𝜕Ω.
(24)

In the solute domain Ω𝑖, (1 − 𝑆)𝜅2𝐺 = 0, while in other subdomains, 𝐺 is well-defined. Thus, the second source term of (24), i.e., 
(1 −𝑆)𝜅2𝐺, is smooth over the entire domain Ω.

For the super-Gaussian PB model [41], a similar potential decomposition is carried out in the vacuum state for the Poisson 
equation (8)

𝑣(𝐫) = 𝑣𝐶 (𝐫) + 𝑣𝑅𝐹 (𝐫) =𝐺(𝐫) + 𝑣𝑅𝐹 (𝐫), 𝐫 ∈Ω. (25)

Here the singular component 𝑣𝐶 is essentially 𝑢𝐶 and is also analytically represented by the Green’s function 𝐺. The reaction field 
potential satisfies a regularized Poisson equation{

−∇ ⋅ (𝜖𝑣(𝐫)∇𝑣𝑅𝐹 (𝐫)) =∇𝜖𝑣(𝐫) ⋅∇𝐺(𝐫), in Ω,

𝑣𝑅𝐹 (𝐫) =𝑣𝑏(𝐫) −𝐺(𝐫) on 𝜕Ω.
(26)

The new source ∇𝜖𝑣 ⋅∇𝐺 is also bounded and smooth under proper conditions [41].
Based on the regularization formulation [36,39–41], we propose to calculate the electrostatic free energy Δ𝐸 = 𝐸[𝑢] − 𝐸[𝑣] of 
7

the NPB model by using reaction field potentials in the first term
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Δ𝐸 =1
2
𝑘𝐵𝑇

𝑁𝑚∑
𝑗=1
𝑞𝑗 (𝑢𝑅𝐹 (𝐫𝑗 ) − 𝑣𝑅𝐹 (𝐫𝑗 )) −

1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω𝐶
𝑖

(1 −𝑆)𝜅2(cosh(𝑢) − 1)𝑑𝐫

+ 1
8𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω𝐶
𝑖

(1 −𝑆)𝜅2𝑢 sinh(𝑢)𝑑𝐫 − 1
8𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
𝜕Ω

(
𝜖𝑢
𝜕𝑢

𝜕𝑛
− 𝜖𝑣𝑣

𝜕𝑣

𝜕𝑛

)
𝑑𝑠. (27)

This is because the difference between two singular potentials 𝑢 and 𝑣 can be calculated by the difference between two non-singular 
potentials 𝑢𝑅𝐹 and 𝑣𝑅𝐹 , i.e.,

𝑢(𝐫) − 𝑣(𝐫) = 𝑢𝑅𝐹 (𝐫) − 𝑣𝑅𝐹 (𝐫), 𝐫 ∈Ω (28)

thanks to the cancelation of the Coulomb components in 𝑢 and 𝑣. Note that the reaction field potentials 𝑢𝑅𝐹 and 𝑣𝑅𝐹 are guaranteed 
to be bounded and smooth throughout the domain Ω [36,39–41], including at charge centers 𝐫𝑗 . Therefore, the first term of Eq. (27)
is no longer singular. The other terms of Eq. (27) are the same as those in Eq. (17), and are also smooth. Therefore, the electrostatic 
free energy given by Eq. (27) does not involve singularity approximations. For the LPB model, Eq. (18) can be similarly transformed 
to

Δ𝐸 = 1
2
𝑘𝐵𝑇

𝑁𝑚∑
𝑗=1
𝑞𝑗 (𝑢𝑅𝐹 (𝐫𝑗 ) − 𝑣𝑅𝐹 (𝐫𝑗 )) −

1
8𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
𝜕Ω

(
𝜖𝑢
𝜕𝑢

𝜕𝑛
− 𝜖𝑣𝑣

𝜕𝑣

𝜕𝑛

)
𝑑𝑠, (29)

for calculating the electrostatic free energy in the regularization formulation.

2.6. Electrostatic free energy calculations

We have proposed four equations for calculating the electrostatic free energy Δ𝐸, including Eq. (18) and Eq. (29) for the LPB 
model, and Eq. (17) and Eq. (27) for the NPB model. Among them, two are based on the regularization formulation, i.e., Eq. (29)
and Eq. (27). The other two, i.e., Eq. (18) and Eq. (17), will be called trilinear forms, because the singular charges will be discretized 
by the trilinear method in these two forms.

Several research issues will be explored in the present study for calculating the electrostatic free energy. First, we will examine 
all individual terms of four free energy forms for different domain size and mesh step size. In particular, for all free energy forms 
derived in this work, surface integrals for 𝑢 and 𝑣 are presented. These surface integrals are usually neglected in the previous PB 
studies. In this work, we will explore if the surface integral shall be kept, especially when the domain Ω is not large enough. In 
practice, a small domain size is usually preferred for saving computational time.

We can explore the surface integrals by mainly considering the trilinear method, while the outcome of the regularization 
method should be similar. In particular, for Δ𝐸 of the LPB model, we will show numerically that the surface integral terms 
1
8𝜋

(𝑘𝐵𝑇 )2

𝑒2𝑐
∫
𝜕Ω

(
𝜖𝑢
𝜕𝑢

𝜕𝑛
− 𝜖𝑣𝑣

𝜕𝑣

𝜕𝑛

)
𝑑𝑠 should be dropped in Eqs. (18) and (29). This is because the first term in Eq. (18) or Eq. (29)

does not depend on the size of domain Ω. In other words, the size of domain Ω determines the surface integral values, but will 
not directly affect the first term. When the size of domain Ω goes to infinity, the surface integral values will be vanishing, and the 
limiting electrostatic free energy is solely due to the first term. Therefore, in the LPB model, we expect that Δ𝐸 calculated without 
surface integrals provides a better approximation to the limiting energy for a finite domain Ω.

For Δ𝐸 of the NPB model, the same argument applies to the surface integral of 𝑣, i.e., 1
8𝜋

(𝑘𝐵𝑇 )2

𝑒2𝑐
∫
𝜕Ω 𝜖𝑣𝑣

𝜕𝑣

𝜕𝑛
𝑑𝑠 should be omitted. 

For the potential 𝑢, two volume integrals are involved in Eq. (17) over Ω or Ω𝐶
𝑖

after simplification. For different domain sizes of 

Ω, the volume integral values are changing, and the surface integral 1
8𝜋

(𝑘𝐵𝑇 )2

𝑒2𝑐
∫
𝜕Ω 𝜖𝑢

𝜕𝑢

𝜕𝑛
𝑑𝑠 may be acted as a compensation value 

for truncating the infinity domain into a finite one in evaluating volume integrals. For this reason, the surface integral of 𝑢 may be 
included in Δ𝐸. We will numerically explore whether 1

8𝜋
(𝑘𝐵𝑇 )2

𝑒2𝑐
∫
𝜕Ω 𝜖𝑢

𝜕𝑢

𝜕𝑛
𝑑𝑠 should be included in calculating Δ𝐸 for both trilinear 

and regularization methods.
In the second research issue, we will compare the electrostatic free energies calculated by the trilinear and regularization methods. 

For the trilinear method, one relies on the error cancelation in 𝑢 −𝑣 for suppressing the grid energy, while by treating singular charges 
analytically, the regularization is free of artificial grid energy. In the previous study [41], the regularization is found to produce more 
accurate energy estimates than the trilinear method for the super-Gaussian LPB model [41]. In the present work, we will explore the 
performance of the regularization for the super-Gaussian NPB model. Moreover, we will show that if the cancelation is impossible, 
the energy calculated by the trilinear method involves huge approximation errors.

Finally, for a set of proteins, we will compare the electrostatic free energies predicted by the LPB and NPB energy forms. In 
literature, there are many works devoted to solve the NPB equation, such as [2,20,47]. However, in these works, only the first term 
in Eq. (17) or Eq. (27) was reported as the electrostatic free energy. Therefore, it is interesting to explore the difference between the 
8

first term and the actual NPB energy form.
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2.7. Diffuse interface and super-Gaussian PB models

The performance of the proposed electrostatic free energy forms will be tested by using the diffuse interface PB model [36,39,40]
and super-Gaussian PB model [21,41]. In this subsection, we will provide further details for these models.

For both diffuse interface and super-Gaussian models, we first generate the smooth surface function 𝑆(𝐫) by the Gaussian convo-
lution surface (GCS) introduced in [39]. Consider a protein with a total 𝑁𝑚 atoms, with the center and radius of each atom being 𝐫𝑗
and 𝑅𝑗 , respectively. By treating each atom as a hard sphere, the Van der Waals (VdW) surface is defined as the smallest envelop 
enclosing the union of all spheres. By augmenting each atomic radius by 3Å, another VdW surface can be defined, which will be re-
ferred as to an extended solute-accessible surface (ESAS). The diffuse interface function 𝑆(𝐫) should satisfy a subdomain requirement 
that 𝑆(𝐫) = 1 inside the VdW surface and 𝑆(𝐫) = 0 outside the ESAS surface.

To generate the GCS, a standard solute-accessible surface (SAS) is first considered, which is a VdW surface after augmenting 
each atomic radius by 1.5Å. A Heaviside function is defined with 𝐻(𝐫) = 1 inside the SAS and 𝐻(𝐫) = 0 outside the SAS. One then 
convolutes 𝐻(𝐫) with a Gaussian kernel function in each Cartesian direction [39]

𝐾(𝑥) = 1
𝜎
√
2𝜋

exp
(
− 𝑥2

2𝜎2

)
. (30)

In real computations, the Heaviside function and Gaussian kernel are defined discretely on a uniform mesh. The discrete convolution 
in three-dimensions is realized through a fast Fourier transform (FFT) algorithm. After discrete convolution, the subdomain require-
ment is enforced in the post-processing to ensure 𝑆(𝐫) = 1 inside the VdW surface and 𝑆(𝐫) = 0 outside the ESAS surface. Based on 
such an interface function 𝑆(𝐫), one can define the solute domain Ω𝑖, the solvent domain Ω𝑒, and the transition layer Ω𝑡, which has 
a width of 3Å [39].

For the diffuse interface PB model [36,39,40], the dielectric function is defined to be

𝜖(𝐫) = 𝑆(𝐫)𝜖𝑚 + (1 −𝑆(𝐫))𝜖𝑜𝑢𝑡, 𝐫 ∈Ω, (31)

where 𝜖𝑚 and 𝜖𝑜𝑢𝑡 are the dielectric constants, respectively, for the molecule and outside medium. For the water state, we take 𝜖𝑚 = 1
and 𝜖𝑜𝑢𝑡 = 80. Then, 𝜖(𝐫) will take constant values in solute and solvent with 𝜖(𝐫) = 𝜖𝑚 in Ω𝑖 and 𝜖(𝐫) = 𝜖𝑜𝑢𝑡 in Ω𝑒. In the smooth 
solute-solvent boundary Ω𝑡, 𝜖(𝐫) varies smoothly from 𝜖𝑚 to 𝜖𝑜𝑢𝑡. With 𝜖(𝐫) and 𝑆(𝐫) defined, one can solve either the NPB equation 
(6) or LPB equation (7) together with the boundary condition Eq. (10) for 𝑢. For the vacuum state, we have 𝜖𝑜𝑢𝑡 = 1, so that 𝜖𝑣(𝐫) = 1
throughout the domain Ω. One then solves the Poisson equation (8) with the boundary condition Eq. (10) for 𝑣. With 𝑢 and 𝑣, the 
electrostatic free energy Δ𝐸 of the trilinear method for the LPB and NPB model can be computed, respectively, by Eq. (18) and 
Eq. (17).

In the regularization method of the diffuse interface PB model [36,39,40], one solves either the NPB equation (22) or LPB 
equation (24) for the reaction field potential 𝑢𝑅𝐹 . Because 𝜖𝑣(𝐫) = 1, one does not need to solve 𝑣𝑅𝐹 . Basically, we have 𝑣(𝐫) =𝐺(𝐫)
and 𝑣𝑅𝐹 (𝐫) = 0. By using these two conditions, Eq. (29) and Eq. (27) could be simplified for calculating the electrostatic free energy 
Δ, respectively, for the LPB and NPB model.

The dielectric function 𝜖(𝐫) is a heterogeneous function in the super-Gaussian PB model [21,41]. In particular, each atom of the 
protein is regarded as a “soft sphere” with a density function. For the 𝑗𝑡ℎ atom, the density at the position 𝐫 is given as [21]

𝑔𝑗 (𝐫) = exp
[
−
( |𝐫 − 𝐫𝑗 |2

𝑅2
𝑗

)𝑚]
, (32)

where 𝑅𝑗 is the VdW radius of the 𝑗𝑡ℎ atom and the relative variance is taken as 1. We will take the order parameter 𝑚 = 2 in this 
study. Next, a total density function for all atoms is defined as

𝑔(𝐫) = 1 −
𝑁𝑚∏
𝑗=1

[1 − 𝑔𝑗 (𝐫)]. (33)

In order to explicitly model the dielectric properties of protein cavities, the maximal dielectric value of the macromolecule is con-
trolled by a parameter 𝜖𝑔𝑎𝑝 in the super-Gaussian model [21], and the dielectric distribution within the protein region is defined 
as

𝜖𝑖𝑛(𝐫) = 𝜖𝑚𝑔(𝐫) + 𝜖𝑔𝑎𝑝[1 − 𝑔(𝐫)], (34)

where the constants 𝜖𝑚 and 𝜖𝑔𝑎𝑝 are the dielectric values at the atom centers and in a gap region, respectively. By combining (33)
with (34), we arrive at a concise form

𝜖𝑖𝑛(𝐫) = 𝜖𝑚 + (𝜖𝑔𝑎𝑝 − 𝜖𝑚)
𝑁𝑚∏
𝑗=1

[1 − 𝑔𝑗 (𝐫)]. (35)

Since 𝜖𝑔𝑎𝑝 > 𝜖𝑚 and 𝑔𝑗 (𝐫) has a range of [0, 1], this means that 𝜖𝑚 and 𝜖𝑔𝑎𝑝 are, respectively, the minimal and maximal dielectric 
9

values of the protein.
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In the super-Gaussian model [21,41], by using the surface function 𝑆(𝐫) defined by the GCS model, the dielectric function in the 
entire domain Ω is defined as

𝜖(𝐫) = 𝑆(𝐫)𝜖𝑖𝑛(𝐫) + [1 −𝑆(𝐫)]𝜖𝑜𝑢𝑡. (36)

Inside the protein region Ω𝑖, we have 𝑆(𝐫) = 1 so that the inhomogeneity of the super-Gaussian dielectric distribution is retained. In 
the exterior region Ω𝑒, we have 𝑆(𝐫) = 0. Then 𝜖(𝐫) becomes a constant 𝜖𝑜𝑢𝑡. As 𝑆(𝐫) decays smoothly from one to zero over Ω𝑡 , 𝜖(𝐫)
will change from 𝜖𝑖𝑛(𝐫) to 𝜖𝑜𝑢𝑡. In the present study, we take 𝜖𝑚 = 1 and 𝜖𝑔𝑎𝑝 = 8 in the super-Gaussian model.

For the trilinear method, the energies can be calculated similarly as in the diffuse interface model. For the water state in the 
super-Gaussian model, we take 𝜖𝑜𝑢𝑡 = 80, and one can solve either the NPB equation (6) or LPB equation (7) together with the 
boundary condition Eq. (10) for 𝑢. For the vacuum state, we have 𝜖𝑜𝑢𝑡 = 1, but 𝜖𝑣(𝐫) is still a heterogeneous function. One then 
solves the Poisson equation (8) with Eq. (10) for 𝑣. With 𝑢 and 𝑣, the electrostatic free energy Δ𝐸 for the LPB and NPB model of the 
trilinear method can be computed, respectively, by Eq. (18) and Eq. (17).

For the regularization method, one similarly solves either the NPB equation (22) or LPB equation (24) for the reaction field 
potential 𝑢𝑅𝐹 . Unlike the diffuse interface model, one needs to solve the Poisson equation (26) for 𝑣𝑅𝐹 in the super-Gaussian model. 
Then the original forms of Eq. (29) and Eq. (27) will be used, respectively, to calculate the electrostatic free energy of the LPB and 
NPB model.

2.8. Numerical discretization and implementation

In this subsection, we offer numerical details for solving the PB equations and for calculating the electrostatic free energies. For 
a given protein structure, we first determine a tight box that contains all VdW balls. An edge value is then used to extend this box in 
both positive and negative directions along 𝑥, 𝑦, and 𝑧 axes. This selects an appropriate computational domain Ω. We next construct 
a uniform mesh partition with 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 being the number of the grid points in 𝑥, 𝑦, and 𝑧 directions, respectively. Without the 
loss of generality, we assume the grid spacing ℎ in all 𝑥, 𝑦, and 𝑧 directions to be the same, i.e., ℎ =Δ𝑥 =Δ𝑦 = Δ𝑧, with the unit Å. 
For a function 𝑓 defined at a node (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘), we denote 𝑓𝑖,𝑗,𝑘 = 𝑓 (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘).

All PB equations to be discretized in this work, including Eqs. (6), (7), (8), (22), (24), and (26), are given in the divergence form. 
The same central finite difference method is employed to approximate the Laplacian term. For example, at the node (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘), the 
𝑥 derivative of 𝑢 in Eq. (6) is approximated as[

𝜕

𝜕𝑥
(𝜖 𝜕𝑢
𝜕𝑥

)
]
𝑖,𝑗,𝑘

= 1
ℎ2

[
𝜖
𝑖+ 1

2 ,𝑗,𝑘

(
𝑢𝑖+1,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘

)
− 𝜖

𝑖− 1
2 ,𝑗,𝑘

(
𝑢𝑖,𝑗,𝑘 − 𝑢𝑖−1,𝑗,𝑘

)]
+𝑂(ℎ2). (37)

The on-grid 𝜖𝑖,𝑗,𝑘 value is calculated based on the aforementioned equations, and depends on 𝑆𝑖,𝑗,𝑘, which is generated discretely by 
the GCS model. Since 𝜖𝑖,𝑗,𝑘 is only known at nodes (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘), the half-grid values needed in Eq. (37), are obtained via an average

𝜖
𝑖+ 1

2 ,𝑗,𝑘
=
𝜖𝑖,𝑗,𝑘 + 𝜖𝑖+1,𝑗,𝑘

2
+𝑂(ℎ2). (38)

The order of accuracy of the entire central difference discretization is two. The finite difference discretization of the Laplacian on the 
left-hand side of the PB equations gives rise to a sparse matrix with dimension 𝑁3-by-𝑁3, where 𝑁3 =𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧.

For the trilinear method, the singular charges in the sources of Eqs. (6), (7) and (8) will be discretized by the traditional trilinear 
approximation [34]. In particular, for each partial charge 𝑞𝑛 located at 𝐫𝑛, one will find a cubic cell containing this charge. One will 
then distribute the charge 𝑞𝑛 into eight corner nodes of the cell, which gives rise to eight numerical source values 𝑄𝑖,𝑗,𝑘 for each 
partial charge. By treating all 𝑁𝑚 charges, the right hand side vector of the discrete system can be formed, which will be non-zero 
only in Ω𝑖, because 𝐫𝑛 ∈Ω𝑖 for all 𝑛.

For the regularized PB equations, i.e., Eqs. (22), (24), and (26), the source terms are smooth functions defined over the entire 
domain Ω. Since 𝐺𝑖,𝑗,𝑘 and ∇𝐺𝑖,𝑗,𝑘 are known analytically, the source term (1 − 𝑆)𝜅2𝐺 can be calculated directly at (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘). For 
the source term ∇𝜖 ⋅∇𝐺, analytical differentiation will be used whenever possible for calculating ∇𝜖. In particular, we know

∇𝜖(𝐫) = 𝑆(𝐫)∇𝜖𝑖𝑛(𝐫) + ∇𝑆(𝐫)(𝜖𝑖𝑛(𝐫) − 𝜖𝑜𝑢𝑡), in Ω, (39)

in which ∇𝜖𝑖𝑛(𝐫) can be computed analytically everywhere [41], while ∇𝑆 is analytically known in Ω𝑖 and Ω𝑒. In Ω𝑡, ∇𝑆 will be 
approximated by the central difference, e.g.

𝜕𝑆

𝜕𝑥

||||𝑖,𝑗,𝑘 = 𝑆𝑖+1,𝑗,𝑘 − 𝑆𝑖−1,𝑗,𝑘2ℎ
+𝑂(ℎ2).

See Ref. [41] for more details. The smooth source term ∇𝜖𝑣 ⋅∇𝐺 for the regularized Poisson equation (26) in vacuum state can be 
calculated similarly.

For the LPB and Poisson equations, i.e., Eqs. (7), (8), (24), and (26), the above discretizations produce a linear system, which will 
be solved by a biconjugate gradient iterative solver in this work. For the NPB equations (6) and (22), the inexact Newton method 
[20] will be employed to treat the nonlinear hyperbolic Sine term.

After solving numerical potentials 𝑢, 𝑣, 𝑢𝑅𝐹 and 𝑣𝑅𝐹 on grid nodes, all forms of electrostatic free energies can be similarly 
10

discretized to generate Δ𝐸, respectively, for Eqs. (17), (18), (27), and (29). In particular, the first term of these equations can be 
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obtained through a trilinear interpolation, which can be regarded as a reverse process of the trilinear distribution of singular charges. 
In fact, the weights calculated in the trilinear method can be re-used for this purpose. Volume integrals can be approximated by a 
summation over all grid nodes in Ω𝐶

𝑖
=Ω𝑡 ∪Ω𝑒. For example,

∫
Ω𝐶
𝑖

(1 −𝑆)𝜅2(cosh(𝑢) − 1)𝑑𝐫 ≈
∑

(𝑥𝑖,𝑦𝑗 ,𝑧𝑘)∈Ω𝐶𝑖

(1 −𝑆𝑖,𝑗,𝑘)𝜅2(cosh(𝑢𝑖,𝑗,𝑘) − 1)ℎ3. (40)

The surface integrals are calculated as a summation over six sides of the domain Ω, where 𝜖(𝐫) = 𝜖𝑜𝑢𝑡 can be moved out the integrals. 
For instance,

∫
𝜕Ω

𝑢
𝜕𝑢

𝜕𝑛
𝑑𝑠 ≈ ℎ2

𝑁𝑥−1∑
𝑖=2

𝑁𝑦−1∑
𝑗=2

(
𝑢𝑖,𝑗,1 + 𝑢𝑖,𝑗,2

2
⋅
𝑢𝑖,𝑗,1 − 𝑢𝑖,𝑗,2

ℎ
+
𝑢𝑖,𝑗,𝑁𝑧−1 + 𝑢𝑖,𝑗,𝑁𝑧

2
⋅
𝑢𝑖,𝑗,𝑁𝑧

− 𝑢𝑖,𝑗,𝑁𝑧−1
ℎ

)

+ ℎ2
𝑁𝑥−1∑
𝑖=2

𝑁𝑧−1∑
𝑘=2

(
𝑢𝑖,1,𝑘 + 𝑢𝑖,2,𝑘

2
⋅
𝑢𝑖,1,𝑘 − 𝑢𝑖,2,𝑘

ℎ
+
𝑢𝑖,𝑁𝑦−1,𝑘 + 𝑢𝑖,𝑁𝑦,𝑘

2
⋅
𝑢𝑖,𝑁𝑦,𝑘

− 𝑢𝑖,𝑁𝑦−1,𝑘
ℎ

)

+ ℎ2
𝑁𝑦−1∑
𝑗=2

𝑁𝑧−1∑
𝑘=2

(
𝑢1,𝑗,𝑘 + 𝑢2,𝑗,𝑘

2
⋅
𝑢1,𝑗,𝑘 − 𝑢2,𝑗,𝑘

ℎ
+
𝑢𝑁𝑥−1,𝑗,𝑘 + 𝑢𝑁𝑥,𝑗,𝑘

2
⋅
𝑢𝑁𝑥,𝑗,𝑘

− 𝑢𝑁𝑥−1,𝑗,𝑘
ℎ

)
. (41)

We note that the discretization in Eq. (41) is conducted at ℎ2 distance inside the boundary 𝜕Ω, such that 𝜕𝑢
𝜕𝑛

can be approximated by 
central differences for a better accuracy. For instance, for the bottom side of the domain, i.e., 𝑧 = 𝑧1, the approximation is considered 
at 𝑧1.5 = 𝑧1 +

ℎ

2 . At this point 𝜕𝑢
𝜕𝑛

≈ 𝑢𝑖,𝑗,1−𝑢𝑖,𝑗,2
ℎ

, while 𝑢 is approximated by the average of two nearby function values 𝑢𝑖,𝑗,1+𝑢𝑖,𝑗,22 .

3. Numerical experiments

In this section, we will numerically validate the proposed electrostatic free energy (EFE) forms in terms of dimensionless potentials 
𝑢 and 𝑣. In the super-Gaussian PB model, we take 𝜖𝑔𝑎𝑝 = 8 and 𝑚 = 2, while in all computations we have 𝜖𝑚 = 1 and 𝐼 = 0.15. For 
the water state and vacuum state, 𝜖𝑜𝑢𝑡 is chosen as 80 and 1, respectively. For domain and mesh size, the length is reported with a 
unit Å, and the EFE automatically has the unit of kcal/mol as we designed. In all figures and tables, the regularization and trilinear 
methods will be denoted as REG and TRI, respectively. For simplicity, the Dirichlet boundary condition Eq. (10) is assumed in both 
LPB and NPB models for both regularization and trilinear methods.

All the experiments are carried out by using a single core on a Dell PowerEdge R920 in The University of Alabama High-
Performance Computer (UAHPC) (https://oit .ua .edu /services /research/) with Intel(R) Xeon(R) CPU E7-8891 v2 operating at 
3.20 GHz clock speed.

3.1. Diffuse interface Kirkwood sphere with benchmark energy

For a Kirkwood sphere with a sharp interface, analytical energy is known for the linearized PB (LPB) model [19,20], while an 
approximated energy with high precision is available for the nonlinear PB (NPB) model [2]. In order to validate the proposed EFE 
forms, we design a Kirkwood sphere with a simple diffuse interface dielectric function, so that the EFE can be accurately approxi-
mated. In short, by using the spherical symmetry, the three-dimensional (3D) PB equation can be reduced to a one-dimensional (1D) 
model [2]. The approximated energy based on the 1D model can be used to benchmark our 3D EFE forms.

Consider a diffuse interface Kirkwood sphere with a unit charge 𝑞0 = 1 located at 𝐫0 = (0, 0, 0). The interfaces Γ𝑖 and Γ𝑒 are spheres 
with radii being 𝑟𝑖 = 2 and 𝑟𝑒 = 5, respectively. Denote 𝑟 = |𝐫|. A piecewise polynomial surface (PPS) is utilized to characterize the 
diffuse interface

𝑆(𝑟) =
⎧⎪⎨⎪⎩
1 0 ≤ 𝑟 ≤ 𝑟𝑖
𝑝(𝑟) 𝑟𝑖 ≤ 𝑟 ≤ 𝑟𝑒
0 𝑟𝑒 ≤ 𝑟,

(42)

where 𝑝(𝑟) is a polynomial of degree five

𝑝(𝑟) = −6
(
𝑟− 𝑟𝑖
𝑟𝑒 − 𝑟𝑖

)5
− 15

(
𝑟− 𝑟𝑖
𝑟𝑒 − 𝑟𝑖

)4
− 10

(
𝑟− 𝑟𝑖
𝑟𝑒 − 𝑟𝑖

)3
. (43)

The polynomial 𝑝(𝑟) is designed such that 𝑆(𝑟) is guaranteed to be 𝐶2 continuous everywhere, including at 𝑟 = 𝑟𝑖 and 𝑟 = 𝑟𝑒. With 
such a 𝑆(𝑟) function, the dielectric function can be calculated according to Eq. (31). The NPB equation of this Kirkwood sphere 
system can be given as

2 𝑒2
𝑐

11

−∇ ⋅ (𝜖∇𝑢(𝐫)) + (1 −𝑆)𝜅 sinh(𝑢(𝐫)) = 4𝜋
𝑘𝐵𝑇

𝑞0𝛿(𝐫). (44)

https://oit.ua.edu/services/research/
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By solving the 3D NPB equation (44) together with the Dirichlet boundary condition, one obtains the potential 𝑢(𝐫) for the water 
state. In the vacuum state, we have 𝜖 = 1 over the entire Ω for the diffuse interface model, so that the potential 𝑣(𝐫) =𝐺(𝐫), i.e., it is 
analytically known as the Green’s function. Consequently, the EFE of this diffuse interface PB model can be calculated.

In the spherical coordinate (𝑟, 𝜃, 𝜑), 𝑢(𝐫) is a function along the radial direction only, while it is a constant along 𝜃 or 𝜑 direction. 
Consequently, the NPB equation (44) can be reduced to an ordinary differential equation (ODE) [2]

−𝜖 𝑑
2𝑢

𝑑𝑟2
− 𝑑𝜖
𝑑𝑟

𝑑𝑢

𝑑𝑟
− 𝜖 2

𝑟

𝑑𝑢

𝑑𝑟
+ (1 −𝑆)𝜅2 sinh(𝑢(𝑟)) = 4𝜋

𝑒2
𝑐

𝑘𝐵𝑇
𝑞0𝛿(𝑟), (45)

for an unknown potential function 𝑢(𝑟) in 1D. Here 𝛿(𝑟) is the 1D Dirac delta function. In order to solve Eq. (45) accurately, the 
physical jump conditions [19,20]

[𝑢] ∶= 𝑢+ − 𝑢− = 0,
[
𝜖
𝑑𝑢

𝑑𝑟

]
∶= 𝜖+ 𝑑𝑢

+

𝑑𝑟
− 𝜖− 𝑑𝑢

−

𝑑𝑟
= 0, (46)

need to be satisfied at both 𝑟 = 𝑟𝑖 and 𝑟 = 𝑟𝑒.
We propose to solve the following 1D boundary value problem (BVP) for the LPB model of the present diffuse interface Kirkwood 

sphere

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−𝜖 𝑑
2𝑢

𝑑𝑟2
− 𝑑𝜖
𝑑𝑟

𝑑𝑢

𝑑𝑟
− 𝜖 2

𝑟

𝑑𝑢

𝑑𝑟
+ (1 −𝑆)𝜅2𝑢 = 0, 𝑟 ∈ [𝑟𝑖, 𝑟𝑒],

𝑑𝑢

𝑑𝑟
= −

𝑒2
𝑐

𝑘𝐵𝑇

𝑞0

𝜖𝑚𝑟
2
𝑖

, 𝑟 = 𝑟𝑖,

𝑑𝑢

𝑑𝑟
+ ( 1
𝑟𝑒

+ 𝜆)𝑢 = 0, 𝑟 = 𝑟𝑒,

(47)

where 𝜆 =
√
𝜅2∕𝜖𝑜𝑢𝑡. For 0 ≤ 𝑟 ≤ 𝑟𝑖, we have 𝑆 = 1 so that Eq. (45) can be analytically solved as in the sharp interface case [2]. In 

particular, consider a decomposition in 1D, i.e., 𝑢 =𝐺+ 𝑢𝑅𝐹 , where the Green’s function is known as 𝐺(𝑟) =
𝑒2
𝑐

𝑘𝐵𝑇

𝑞0
𝜖𝑚𝑟

. For 𝑟 ∈ [0, 𝑟𝑖], 

the reaction-field potential 𝑢𝑅𝐹 can be solved analytically as a constant [2]. Thus, 𝑢 = 𝐶1 +
𝑒2
𝑐

𝑘𝐵𝑇

𝑞0
𝜖𝑚𝑟

in [0, 𝑟𝑖]. Here, the unknown 

constant 𝐶1 can be eliminated by taking a derivative with respect to 𝑟. By using the jump condition (46) at 𝑟 = 𝑟𝑖, the potential 
𝑢 in [𝑟𝑖, 𝑟𝑒] also satisfies the same derivative condition, which gives rise to the Neumann boundary condition at 𝑟 = 𝑟𝑖 in (47). In 
𝑟𝑒 ≤ 𝑟 <∞, the general solution of the LPB equation (47) can be given as [2]

𝑢 = 𝐶2
exp(−𝜆𝑟)

𝑟
+𝐶3

exp(𝜆𝑟)
2𝜆𝑟

. (48)

Since 𝜆 > 0, 𝐶3 has to equal to zero in Eq. (48) so that 𝑢 is finite at infinity. By taking derivative with respect to 𝑟 and making use of 
the jump condition (46) at 𝑟 = 𝑟𝑒, the potential 𝑢 in [𝑟𝑖, 𝑟𝑒] satisfies the Robin boundary condition at 𝑟 = 𝑟𝑒 in (47).

We note that the BVP (47) needs to be solved over a fixed domain [𝑟𝑖, 𝑟𝑒] = [2, 5], but the solution is equivalent to the one defined 
over the infinity domain [0, ∞). Moreover, the solution 𝑢(𝑟) has an arbitrarily high regularity in the transition band [𝑟𝑖, 𝑟𝑒], so that a 
high order numerical approximation is feasible. In the present study, the eighth order finite difference method is employed to solve 
Eq. (47) numerically, and the Neumann and Robin boundary conditions are discretized by the matched interface and boundary (MIB) 
method [18,48]. With the numerical solution, the EFE can be estimated as in [2]. In particular, the surface integrals in Eq. (18) can 
be neglected, since the essential domain of the present approximation is [0, ∞). Thus, the EFE Δ𝐸 is determined by the first term 
only, i.e., 12𝑘𝐵𝑇 𝑞0(𝑢(0) −𝐺(0)), where 𝐺 is the Green’s function. Using the fact that 𝑢𝑅𝐹 is a constant in [0, 𝑟𝑖], Δ𝐸 of the 1D LPB 
model can be calculated as [2]

Δ𝐸 = 1
2
𝑘𝐵𝑇 𝑞0(𝑢(0) −𝐺(0)) =

1
2
𝑘𝐵𝑇 𝑞0

(
𝑢(𝑟𝑖) −

𝑒2
𝑐

𝑘𝐵𝑇

𝑞0
𝜖𝑚𝑟𝑖

)
, (49)

where 𝑢(𝑟𝑖) is numerically obtained and other parameters are all known. By using the eighth order MIB method and 𝑁 = 6401, the 
LPB EFE of the diffuse interface Kirkwood sphere is calculated as Δ𝐸 = −68.884489814969 kal/mol.

For the NPB model, Eq. (45) does not admit an analytical solution in [𝑟𝑒, ∞). Consequently, numerical solution of Eq. (45) over 
the infinity domain [𝑟𝑖, ∞) has to be considered. Following Ref. [2], we will truncate the infinity domain [𝑟𝑖, ∞) at a large enough 𝑏
value, e.g., 𝑏 = 100, and conduct the numerical approximation over the finite domain [𝑟𝑖, 𝑏]. We propose to solve the following 1D 
12

BVP for the NPB model of the diffuse interface Kirkwood sphere
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Table 1

The EFE estimate for the LPB model of the diffuse interface Kirkwood sphere. For 
both TRI and REG methods, a fixed step size ℎ = 0.4 is considered with different 
domain size 𝑎.

TRI 𝑎 First term SI of 𝑢 SI of 𝑣 Total Sum

6 -71.1720147 -0.1069531 -23.8144420 -94.8795036

8 -71.1707851 -0.0511329 -17.7013280 -88.8209802

10 -71.1698792 -0.0257987 -14.0864617 -85.2305421

20 -71.1685750 -0.0011632 -6.9705093 -78.1379210

30 -71.1684429 -0.0000645 -4.6311145 -75.7994930

40 -71.1685428 -0.0000037 -3.4674474 -74.6359864

REG 6 -71.0689974 -0.1358288 -23.8222868 -94.7554554

8 -71.0538468 -0.0640988 -17.7045287 -88.6942768

10 -71.0467325 -0.0323894 -14.0879407 -85.1022838

20 -70.9823709 -0.0014980 -6.9706114 -77.9514843

30 -70.9252693 -0.0000839 -4.6312142 -75.5563996

40 -71.0384352 -0.0000049 -3.4675235 -74.5059537

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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𝑑𝑢

𝑑𝑟
+ (1 −𝑆)𝜅2 sinh(𝑢) = 0, 𝑟 ∈ [𝑟𝑖, 𝑏],

𝑑𝑢

𝑑𝑟
= −

𝑒2
𝑐

𝑘𝐵𝑇

𝑞0

𝜖𝑚𝑟
2
𝑖

, 𝑟 = 𝑟𝑖,

𝑢 = 0, 𝑟 = 𝑏,

(50)

where a simple Dirichlet zero boundary condition is assumed at 𝑟 = 𝑏, because the potential 𝑢 is known to be exponentially decay as 
𝑟 →∞. Again, the high order MIB finite difference method [18,48] is employed to discretize the BVP Eq. (50). The resulted nonlinear 
system is solved by Newton’s method. Since the regularity of the solution 𝑢 is just 𝐶2 continuous at 𝑟 = 𝑟𝑒, the present numerical 
error could be larger than that of the 1D LPB BVP. With the numerical solution, the NPB EFE Δ𝐸 will be calculated according to 
Eq. (17). In particular, the first term will be calculated as in the 1D LPB case. With 𝑏 = 100, the calculated surface integral values are 
on the order of the double precision limit, and thus do not need to be included. Therefore, Δ𝐸 of the 1D NPB model is calculated as

Δ𝐸 = 1
2
𝑘𝐵𝑇 𝑞0

(
𝑢(𝑟𝑖) −

𝑒2
𝑐

𝑘𝐵𝑇

𝑞0
𝜖𝑚𝑟𝑖

)
−

(𝑘𝐵𝑇 )2

𝑒2
𝑐

𝑏

∫
𝑟𝑖

(1 −𝑆)𝜅2(cosh(𝑢) − 1)𝑟2𝑑𝑟+ 1
2
(𝑘𝐵𝑇 )2

𝑒2
𝑐

𝑏

∫
𝑟𝑖

(1 −𝑆)𝜅2𝑢 sinh(𝑢)𝑟2𝑑𝑟, (51)

where two integrals are approximated by the Trapezoidal Rule. By using the eighth order MIB scheme and 𝑁 = 6401, the NPB EFE 
of the diffuse interface Kirkwood sphere is calculated as Δ𝐸 = −73.415356786147 kcal/mol.

With benchmark energy values, we first study the 3D LPB model of the diffuse interface Kirkwood sphere. To this end, the 
linearized version of Eq. (44) is solved with the Dirichlet boundary condition by using the trilinear (TRI) and regularization (REG) 
methods. Here, a cubic domain Ω = [−𝑎, 𝑎]3 is considered, and the spacing ℎ is chosen to be the same in all directions with 𝑁𝑥 =
𝑁𝑦 =𝑁𝑧. By taking ℎ = 0.4, we first examine the dependence of the EFE forms (18) and (29) on the domain size 𝑎. As discussed 
above, the surface integrals (SIs) of 𝑢 and 𝑣 shall be dropped in the LPB EFE, while the first term of Eqs. (18) and (29) could provide 
an estimate of Δ𝐸 based on a finite domain. In Table 1, we report numerical values of the first term, the SI of 𝑢, the SI of 𝑣, and the 
total sum against different 𝑎 values. It can be seen that the first term produces a consistent estimate for different domain size 𝑎, in 
both trilinear and regularization schemes. On the other hand, the SI of 𝑣 decays slowly with respect to 𝑎, so that the total sum does 
not seem to be converged for both trilinear and regularization schemes. The SI of 𝑢 could be neglected for large 𝑎 values in Table 1, 
while it may affect the summation for small 𝑎 values. To further explore the convergence pattern, we focus on two EFE estimates, 
i.e., the energy without the SI of 𝑣 (EWV) and the energy without SIs of 𝑢 and 𝑣 (EWUV). The calculated EWV and EWUV values are 
plotted against the domain size 𝑎 in Fig. 2 (a). It is observed that both trilinear and regularization values approach to certain limits 
as 𝑎 goes to infinity, while the convergence pattern of the trilinear method seems to be more consistent. On the other hand, for both 
methods, the convergence pattern of the EWUV seems to be better than that of the EWV.

We next examine the convergence with respect to the step size ℎ by using a fixed domain [−10, 10]3 or 𝑎 = 10. Numerical values 
of the first term, the SI of 𝑢, the SI of 𝑣, and the total sum are reported in Table 2, while the EWV and EWUV estimates are plotted 
in Fig. 2 (b). With a fixed domain size 𝑎, it can be seen that the SIs of 𝑢 and 𝑣 do not change much when ℎ becomes smaller. Thus, 
the EWV and EWUV estimates are almost the same in Fig. 2 (b). When ℎ goes to zero, both trilinear and regularization methods 
converge to the same place, which is very close the benchmark value generated by the 1D BVP model. Moreover, the regularization 
errors seem to be better than those of the trilinear.

We next study the 3D NPB model of the diffuse interface Kirkwood sphere. With the same numerical setup, we solve Eq. (44) with 
the Dirichlet boundary condition by using the trilinear and regularization methods. For the NPB EFE forms, the first term in Eq. (17)
13

for the trilinear method is equivalent to the first term in Eq. (27) for the regularization method, while other terms in both equations 
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Fig. 2. Convergence in the EFE of the LPB model for the diffuse interface Kirkwood sphere. (a) Convergence with respect to the domain size 𝑎 with ℎ = 0.4; 
(b) Convergence with respect to the step size ℎ with 𝑎 = 10. For both TRI and REG methods, the energy without SI of 𝑣 (EWV) and the energy without SIs of 𝑢 and 𝑣
(EWUV) are plotted.

Table 2

The EFE estimate for the LPB model of the diffuse interface Kirkwood sphere. For 
both TRI and REG methods, a fixed domain size 𝑎 = 10 is considered with different 
step size ℎ.

TRI ℎ First term SI of 𝑢 SI of 𝑣 Total Sum

1.0 -78.8165076 -0.0288689 -14.5557469 -93.3433857

0.8 -75.9068638 -0.0277955 -14.3933877 -90.2724560

0.4 -71.1698792 -0.0257987 -14.0864617 -85.2305421

0.2 -69.5119358 -0.0249069 -13.9412562 -83.4282852

0.1 -69.0478315 -0.0245337 -13.8709084 -82.8942061

REG 1.0 -67.8899534 -0.1970892 -14.5673015 -82.2601656

0.8 -74.2226938 -0.0593496 -14.4005612 -88.5639053

0.4 -71.0467325 -0.0323894 -14.0879407 -85.1022838

0.2 -69.6061724 -0.0259173 -13.9412227 -83.5214778

0.1 -69.0968629 -0.0245705 -13.8700938 -82.9423863

are essentially the same. As discussed in Section 2, the SI of 𝑣 should be dropped, but the inclusion of the SI of 𝑢 should be explored 
in the NPB model, because it may serve as a closure term for the volume integrals, i.e., the second and third terms of Eq. (17) and 
Eq. (27).

The numerical values of each term are reported in Table 3 for different domain size. It can be seen that the first three terms 
produce consistent values for all 𝑎 values. Both SIs of 𝑢 and 𝑣 are decaying as 𝑎 becomes larger. The SI of 𝑢 decays quickly, while 
the SI of 𝑣 decays too slow so that the total sum does not display converging pattern. For the NPB energy, the sum of the first 
three terms yields the energy without SIs of 𝑢 and 𝑣 (EWUV), while energy without the SI of 𝑣 (EWV) includes the SI of 𝑢. These 
two EFE estimates are depicted in Fig. 3 (a) for different domain size 𝑎. Again, the trilinear energies converge better than those of 
regularization, while both trilinear and regularization values approach to certain limits as 𝑎 goes to infinity. On the other hand, for 
both methods, the convergence pattern of the EWUV seems to be better than that of the EWV.

The convergence with respect to the step size ℎ is finally studied for the NPB model. By using a fixed domain [−10, 10]3, numerical 
values are reported in Table 4, while the EWV and EWUV estimates are plotted in Fig. 3 (b). With a constant 𝑎, the SIs of 𝑢 and 𝑣 do 
not change much when ℎ goes to zero. Consequently, the EWV and EWUV estimates are almost the same in Fig. 3 (b). When ℎ goes 
to zero, both trilinear and regularization methods converge to the same place, which agrees well to the benchmark value generated 
by the 1D BVP model.

3.2. Super-Gaussian NPB energy of one atom system

In the rest of the paper, we will mainly focus on the EFE forms of the NPB model, i.e., Eq. (17) and Eq. (27), for the super-
Gaussian model [21,41]. In this subsection, we study a simple super-Gaussian model, i.e., one atom system. Similarly to the diffuse 
interface Kirkwood sphere, we take 𝑞0 = 1, 𝐫0 = (0, 0, 0), 𝑟𝑖 = 2, and 𝑟𝑒 = 5. The domain is also chosen as [−𝑎, 𝑎]3. Unlike the previous 
subsection, the smooth surface function 𝑆 is calculated by the Gaussian convolution surface (GCS) [39], which is designed for general 
proteins. Because the GCS is not analytically defined and is mesh dependent [39], we will not generate 1D benchmark value for the 
14

present one atom system. By using the super-Gaussian dielectric function 𝜖, the potential 𝑢(𝐫) for the water state is also governed 
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Table 3

The EFE estimate for the NPB model of the diffuse interface Kirkwood sphere. For both TRI and REG methods, a fixed 
step size ℎ = 0.4 is considered with different domain size 𝑎.

TRI Domain First term Second term Third term SI of 𝑢 SI of 𝑣 Total Sum

6 -75.0430552 0.2941850 2.0158050 -0.0471305 -23.8144420 -97.0887468

8 -75.0494765 0.2945447 2.0056965 -0.0208711 -17.7013280 -91.0187816

10 -75.0522704 0.2933049 1.9993742 -0.0097121 -14.0864617 -87.4229507

20 -75.0550077 0.2882418 1.9887986 -0.0002990 -6.9705093 -80.3246613

30 -75.0550468 0.2874315 1.9876921 -0.0000131 -4.6311145 -77.9858877

40 -75.0551615 0.2873529 1.9875959 -0.0000007 -3.4674474 -76.8223652

REG 6 -74.5220398 0.2619886 1.7844080 -0.0820912 -23.8222868 -96.7398160

8 -74.5235821 0.2681509 1.7865467 -0.0368425 -17.7045287 -90.6728724

10 -74.5243852 0.2705294 1.7867967 -0.0178754 -14.0879407 -87.0781832

20 -74.4979001 0.2732617 1.8009576 -0.0007151 -6.9706114 -79.9401004

30 -74.4704240 0.2750667 1.8162537 -0.0000369 -4.6312142 -77.5604143

40 -74.5253063 0.2707925 1.7845898 -0.0000021 -3.4675235 -76.4790304

Fig. 3. Convergence in the EFE of the NPB model for the diffuse interface Kirkwood sphere. (a) Convergence with respect to the domain size 𝑎 with ℎ = 0.4; 
(b) Convergence with respect to the step size ℎ with 𝑎 = 10. For both TRI and REG methods, the energy without SI of 𝑣 (EWV) and the energy without SIs of 𝑢 and 𝑣
(EWUV) are plotted.

Table 4

The EFE estimate for the NPB model of the diffuse interface Kirkwood sphere. For both TRI and REG methods, a 
fixed domain size 𝑎 = 10 is considered with different step size ℎ.

TRI ℎ First term Second term Third term SI of 𝑢 SI of 𝑣 Total Sum

1.0 -78.9742294 0.0878285 0.1980849 -0.0255339 -14.5557469 -93.3941861

0.8 -76.9846256 0.1604262 0.8032858 -0.0194701 -14.3933877 -90.7156837

0.4 -75.0522704 0.2933049 1.9993742 -0.0097121 -14.0864617 -87.4229507

0.2 -75.5850267 0.3549858 2.7847067 -0.0055747 -13.9412562 -87.0909873

0.1 -75.9753550 0.3743093 3.0537928 -0.0042461 -13.8709084 -87.1625339

REG 1.0 -68.1112016 0.5643663 0.8866032 -0.1552432 -14.5673015 -82.2010230

0.8 -74.4347284 0.1368915 0.2879194 -0.0548359 -14.4005612 -88.6294257

0.4 -74.5243852 0.2705294 1.7867967 -0.0178754 -14.0879407 -87.0781832

0.2 -75.5380548 0.3465541 2.7193076 -0.0071415 -13.9412227 -87.0993825

0.1 -75.9721343 0.3712849 3.0305371 -0.0045530 -13.8700938 -87.1784229

by the 3D NPB equation (44) together with the Dirichlet boundary condition. For the vacuum state, one needs to solve a Poisson 
equation for the potential 𝑣(𝐫) [21,41]. Then, the EFE can be calculated based on Eq. (17) for the trilinear method. The EFE for the 
regularization can be computed similarly.

We first explore the energy dependence on the domain size 𝑎 for the present system. With a fixed ℎ = 0.4, the energy values are 
reported in Table 5. It can be seen that SIs of 𝑢 and 𝑣 are decaying as before. However, compared with the results of diffuse interface 
15

Kirkwood sphere in Table 3, the present energy values are heavily affected by the domain size 𝑎. It is unclear if each individual term 
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Table 5

The EFE estimate for the super-Gaussian NPB model of one atom system. For both TRI and REG methods, a fixed 
step ℎ = 0.4 is considered with different domain size 𝑎.

TRI 𝑎 First term Second term Third term SI of 𝑢 SI of 𝑣 Total Sum

6 -44.2962701 0.0559752 0.1320352 -0.1006547 -23.8435067 -67.9630622

8 -44.1340520 0.0670210 0.1487405 -0.0476979 -17.7133604 -61.7179950

10 -44.3702771 0.0741313 0.1620203 -0.0238197 -14.0923073 -58.3508756

20 -43.7920295 0.0790188 0.1618223 -0.0010602 -6.9711426 -50.6793084

30 -43.9453590 0.0801425 0.1670520 -0.0000581 -4.6313636 -48.4897550

40 -43.9844271 0.0766243 0.1348956 -0.0000036 -3.4675694 -47.3937216

REG 6 -44.4094940 0.0406952 0.0541923 -0.1109323 -23.4194020 -67.7044665

8 -44.2044516 0.0517317 0.0649382 -0.0508426 -17.4303940 -61.5707965

10 -44.3592999 0.0585160 0.0728337 -0.0251579 -13.8607228 -58.1805471

20 -43.8207993 0.0649118 0.0777307 -0.0010949 -6.8796069 -50.6864925

30 -43.9246945 0.0655977 0.0790750 -0.0000591 -4.5688192 -48.4799773

40 -43.8855033 0.0667357 0.0766252 -0.0000035 -3.4174141 -47.2930245

Fig. 4. Convergence in the EFE of the super-Gaussian NPB model for one atom system. (a) Convergence with respect to the domain size 𝑎 with ℎ = 0.4; (b) Convergence 
with respect to the step size ℎ with 𝑎 = 10.

will converge as 𝑎 becomes larger. In Fig. 4 (a), the EWV and EWUV values are depicted for both REG and TRI methods. Oscillations 
can be seen in all cases for small domain sizes, which should be due to the GCS. The GCS has a convergence problem since it is 
discretely computed and Ref. [39] has demonstrated that the GCS convergence is oscillatory rather than monotone which impacts 
the convergence of energy. In the present study, only when 𝑎 ≥ 20, certain converging patterns could be seen. For both methods, 
EWV and EWUV values are the same for 𝑎 ≥ 20, while for small 𝑎 values, it is hard to say which one is better.

We next examine the convergence with respect to the step size ℎ. By using a fixed domain [−10, 10]3, numerical values are listed 
in Table 6, while the EWV and EWUV values are plotted in Fig. 4 (b). Such results are similar to those of the diffuse interface 
Kirkwood sphere. In particular, the SIs of 𝑢 and 𝑣 are stable for a fixed 𝑎, so that the EWV and EWUV estimates are almost the same 
throughout. When ℎ goes to zero, both REG and TRI energies converge to the same place, while the convergence of the TRI seems to 
be faster.

3.3. Super-Gaussian NPB energy of a protein

We next study the EFE of the super-Gaussian NPB model of a protein (PDB ID: 1TQG). For a protein, our code will automatically 
calculate a tight domain containing all VdW balls of the protein system. An edge value is then chosen to extend the domain in 
all Cartesian directions to define the computational domain Ω. The GCS surface can then be generated with the band-width of the 
transition region Ω𝑡 being 3Å, which imposes a lower bound for the edge value. By using a fixed ℎ = 0.5, the results of the TRI and 
REG methods are reported in Table 7 for several edge values. It can be seen that the first three terms of Eqs. (17) and (27) obviously 
converge to certain limits. The SI of 𝑣 has large magnitudes for all tested edge value. The SI of 𝑢 is decaying as the edge becomes 
larger. However, the magnitude of the SI of 𝑢 is very small comparing with that of the first term. In other words, the inclusion or 
exclusion of the SI of 𝑢 essentially does not affect the EFE for protein systems, even if a very small edge value is used. In Fig. 5 (a), 
the plots of the EWV and EWUV are given. Indeed, one cannot distinguish the EWV and EWUV in all cases. As can be seen in Fig. 5
16

(a), the NPB energies of the TRI and REG methods are approaching certain constant values, as the edge becomes larger. On the other 
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Table 6

The EFE estimate for the super-Gaussian NPB model of one atom system. For both TRI and REG methods, a fixed 
domain size 𝑎 = 10 is considered with different step size ℎ.

TRI ℎ First term Second term Third term SI of 𝑢 SI of 𝑣 Total Sum

1.0 -43.7893335 0.0544754 0.0608482 -0.0283965 -14.5960264 -58.3505906

0.8 -44.7202599 0.0547629 0.0584914 0.0271119 -14.4225638 -59.1119834

0.4 -44.3702771 0.0741313 0.1620203 -0.0238197 -14.0923073 -58.3508756

0.2 -44.2984548 0.0958764 0.2859959 -0.0216004 -13.9422702 -58.0290051

0.1 -44.2790319 0.0943178 0.2771082 -0.0213365 -13.8705565 -57.9454615

REG 1.0 -46.5851051 0.1292982 0.4819823 -0.0145912 -14.3758051 -60.5936349

0.8 -46.6111645 0.0565624 0.0592719 -0.0284192 -14.2845899 -60.8646256

0.4 -44.3592999 0.0585160 0.0728337 -0.0251579 -13.8607228 -58.1805471

0.2 -44.0574104 0.0946896 0.2635359 -0.0234181 -13.8340471 -57.6991931

0.1 -44.1672353 0.0976008 0.2896286 -0.0220705 -13.8303163 -57.7834534

Table 7

The EFE estimate for the super-Gaussian NPB model of the protein 1TQG. For both TRI and REG methods, a fixed step size ℎ = 0.5 is 
considered with different edge values. CPU time in seconds is reported for all cases.

TRI Edge First term Second term Third term SI of 𝑢 SI of 𝑣 Total Sum CPU Time

5 -696.2046530 3.4307394 16.7763499 -0.1968619 -291.9357902 -974.5979709 47.72498

8 -689.8894325 3.5031771 16.8861305 -0.0725517 -258.5621050 -934.9960325 72.29057

10 -687.5080350 3.5271612 16.9185447 -0.0386366 -240.0826858 -914.1607008 92.54121

15 -684.3568187 3.5550070 16.9667289 -0.0088519 -204.7070019 -875.6432469 153.9583

20 -682.6563175 3.5378867 16.7721385 -0.0023198 -178.5907772 -848.0105232 253.3977

REG 5 -674.2475947 2.7397790 10.4875390 -0.2770970 -279.8493374 -946.0720751 54.57806

8 -666.4267914 2.8772650 10.6764696 -0.0998373 -248.1275497 -906.6552992 79.31136

10 -663.2876316 2.9252907 10.7421286 -0.0526325 -230.4725191 -885.8906804 101.6429

15 -658.7290794 2.9790051 10.8208186 -0.0119135 -196.5972892 -847.4726416 167.4202

20 -656.0605690 2.9733687 10.6613435 -0.0030624 -171.5397213 -819.9092532 296.6006

Fig. 5. Convergence in the EFE for the super-Gaussian NPB energy of the protein 1TQG. (a) Convergence with respect to the edge value with ℎ = 0.5; (b) Convergence 
with respect to the step size ℎ with a fixed edge value 8.

hand, when the edge is larger, more computational time is required, which has been reported in Table 7. The edge value of 8Å seems 
to a good choice that balances the efficiency and EFE accuracy.

With a fixed ℎ = 0.5, the energy difference between the TRI and REG methods seems to be a constant for different edge values. 
We next show that such a difference could be reduced when ℎ becomes smaller. In Table 8, we report values of each term for a fixed 
edge=8 and different ℎ values. Moreover, the plots of the EWV and EWUV are offered in Fig. 5 (b). It can be seen that the TRI and 
REG energies will converge to the same limit as ℎ goes to zero. Moreover, as shown in Table 8, the CPU time increases dramatically 
17

as mesh is refined. A large edge value will be too expensive for large proteins.
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Table 8

The EFE estimate for the super-Gaussian NPB model of the protein 1TQG. For both TRI and REG methods, a fixed edge value 8 is 
considered with different step size ℎ. CPU time in seconds is reported in all cases.

TRI ℎ First term Second term Third term SI of 𝑢 SI of 𝑣 Total Sum CPU Time

1.0 -673.9264156 2.5278947 12.6498256 -0.0882812 -261.3973545 -925.1135579 6.63489

0.75 -698.8579774 3.2827020 14.9344676 -0.0848568 -261.5101655 -948.6315204 16.74778

0.5 -689.8894325 3.5031771 16.8861305 -0.0725517 -258.5621050 -934.9960325 72.29057

0.25 -686.4809492 3.6226822 18.5597293 -0.0681598 -257.2366454 -928.7123877 772.6540

REG 1.0 -731.5187095 5.0115913 33.0370498 -0.0683663 -243.9227306 -947.3476153 11.00910

0.75 -654.2857568 3.5016205 11.7224586 -0.1516511 -240.2092947 -886.1225623 17.46272

0.5 -666.4267914 2.8772650 10.6764696 -0.0998373 -248.1275497 -906.6552992 79.31136

0.25 -678.1767264 3.5380806 17.0892388 -0.0775160 -254.1526561 -918.7007083 904.0687

For all tests so far, the EWUV estimate is either the same as the EWV estimate, or is slightly better. Based on these experiments, 
we conclude that both SIs of 𝑢 and 𝑣 should be dropped in calculating the EFE of the NPB model. For the rest of paper, we will simply 
report the EWUV value, i.e., the sum of the first three terms in Eqs. (17) and (27), as the NPB EFE.

3.4. Impact of rotation and shifting

In this subsection, we focus on investigating the impact of grid rotation and shifting. When a biomolecule is moved or rotated, its 
electrostatic free energy remains unaffected from a physical perspective. However, the NPB EFE defined by Eqs. (17) and (27) has to 
be computed discretely by the finite difference method and numerical quadrature, and such approximations are grid dependent and 
may be impacted by rotation and shifting. Hence, it is essential to assess the grid sensitivity to rotation and shifting for the EFE of 
the trilinear method, i.e., Eq. (17) and the EFE of the regularization method, i.e., Eq. (27).

The sensitivity of grid rotation and shifting has been examined for the super-Gaussian LPB model for a small compound in [41]. 
In our investigation, we will consider the super-Gaussian NPB model for a protein (PDB ID: 1AHO). With an edge value of 8 and step 
size ℎ = 0.5, an initial domain Ω is selected automatically. Unsynchronized rotation and shifting will be considered in this work. This 
means that the charge positions and protein structure in the vacuum state are different from those in the water state, due to rotation 
or shifting. Consequently, the domain Ω, subdomains, and smooth surface function 𝑆 will be different too. In particular, consider 
charges in water state at 𝐫𝑗 for 𝑗 = 1, 2, … , 𝑁𝑚. After unsynchronized rotation or shifting, denote the new charge positions in vacuum 
state as 𝐫′𝑗 for 𝑗 = 1, 2, … , 𝑁𝑚. The NPB EFE of the trilinear method will be calculated as

Δ𝐸 = 1
2
𝑘𝐵𝑇

𝑁𝑚∑
𝑗=1
𝑞𝑗 (𝑢(𝐫𝑗 ) − 𝑣(𝐫′𝑗 )) −

1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω𝐶
𝑖

(1 −𝑆)𝜅2(cosh(𝑢) − 1)𝑑𝐫 + 1
8𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω𝐶
𝑖

(1 −𝑆)𝜅2𝑢 sinh(𝑢)𝑑𝐫. (52)

Similarly, in the regularization method, the EFE (27) is replaced by

Δ𝐸 = 1
2
𝑘𝐵𝑇

𝑁𝑚∑
𝑗=1
𝑞𝑗 (𝑢𝑅𝐹 (𝐫𝑗 ) − 𝑣𝑅𝐹 (𝐫′𝑗 )) −

1
4𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω𝐶
𝑖

(1 −𝑆)𝜅2(cosh(𝑢) − 1)𝑑𝐫 + 1
8𝜋

(𝑘𝐵𝑇 )2

𝑒2
𝑐

∫
Ω𝐶
𝑖

(1 −𝑆)𝜅2𝑢 sinh(𝑢)𝑑𝐫. (53)

In both equations, the summations of 𝑢 and 𝑣 should be calculated separately in the first term in different coordinate systems [41]. 
For the second and third terms, the volume integrals are calculated for 𝑢 in water state only, i.e., Ω𝐶

𝑖
is based on the original 

subdomains before rotation or shifting.
To conduct the shifting test, we will displace the 1AHO protein along the 𝑧 direction in increments of 0.05. Specifically, the 𝑥

and 𝑦 coordinate values of all atomic centers will remain unchanged, while the 𝑧 values will be increased by 0.05 in each step. With 
each shift, a computational domain will be generated automatically. After ten shifts, the relative position of the shifted structure in 
relation to the uniform mesh will essentially be identical to the initial position due to a grid spacing of ℎ = 0.5. Consequently, the 
numerical energy should be equivalent to the original energy. In the rotation test, for each charge center or atom center 𝐫𝑗 , we will 
keep its 𝑥 coordinate value a constant, while rotating its (𝑦, 𝑧) coordinates within the 𝑦𝑧-plane relative to the origin (𝑦, 𝑧) = (0, 0). 
The rotation will be performed in increments of 30◦, resulting in a total of 12 steps to complete a full rotation and return the (𝑦, 𝑧)
coordinates to their original positions. For each rotated structure, a new computational domain will be automatically generated to 
calculate the potential 𝑣.

The numerical illustrations of unsynchronized rotation and shifting are presented in Fig. 6. Notably, significant errors are observed 
in the trilinear method. For shifting, the most pronounced deviation occurs at 0.15, resulting in an energy value of approximately 
−1010. On the other hand, in the case of rotation, the energy exhibits dramatic oscillations with maximum deviations around −1413. 
At rotation angles of 90, 180, and 270 degrees, the energy closely resembles that of 0 degree. Remarkably, the regularization energy 
remains largely unaffected by such unsynchronized rotation or shifting, with energies always around −153. In Fig. 6, the energy 
curves appear as straight lines. The graph in Fig. 6 demonstrates the robustness of the regularization method when it comes to grid 
18

rotation and shifting.
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Fig. 6. Grid sensitivity tests of rotation and shifting in the NPB EFE for the 1AHO. (a) Unsynchronized rotation; (b) Unsynchronized shifting.

The large errors involved in the trilinear method for unsynchronized rotation and shifting are due to the presence of grid artifacts 
or artificial grid energy. In original EFE Eq. (17), the trilinear discretization of singular charges yields very large errors at charge 
centers 𝐫𝑗 , which fortunately happen to be the same in solving 𝑢 in water state and 𝑣 in vacuum state. Thus, such charge errors are 
canceled in Eq. (17). With unsynchronized rotation and shifting, such cancelation does not happen in Eq. (52). Hence, the trilinear 
energy is mostly dominated by the artificial grid energy in Fig. 6. By treating singular charges analytically, the artificial grid energy 
is completely eliminated in the regularization method. Thus, even with unsynchronized rotation and shifting, the EFE Eq. (53)
produces a constant estimate for different rotation and shifting. In the rest of the paper, we will mainly focus on the regularization 
method.

3.5. Electrostatic free energies for linearized and nonlinear PB models

In this subsection, we will study the energy difference between the linearized PB (LPB) and nonlinear PB (NPB) models. In 
particular, by using the super-Gaussian PB model with the regularization, we calculate the LPB EFE Δ𝐸𝐿 by Eq. (29) and the NPB 
EFE Δ𝐸𝑁 by Eq. (27) for a set of proteins, and compare their difference. Moreover, we will conduct the similar studies by using a 
sharp-interface PB model, i.e., the rMIB package originally developed in [20]. By using the matched interface and boundary (MIB) 
scheme for treating the sharp interface and jump conditions, and a two-component regularization method for singular charges, the 
rMIB finite difference algorithm is known to provide a second order accuracy in solving the LPB equation [20]. In the present study, 
the ESES molecular surface [30], instead of the MSMS molecular surface, is employed in the rMIB package. However, in the rMIB 
package [20], the EFE of the NPB model is calculated by only the first term of Eq. (27). For this reason, the rMIB NPB energy will 
be denoted as Δ𝐸𝑁1 or marked as “NPB first term” in the present study. For a comparison, for the super-Gaussian model, besides 
the NPB energy Δ𝐸𝑁 , we will also report the result of NPB first term, i.e., Δ𝐸𝑁1, which is calculated based on the first term 
only.

A set of proteins that have been studied previously in [7,41] will be considered. For both super-Gaussian and rMIB methods, we 
take 𝜖𝑚 = 1, 𝐼 = 0.15, ℎ = 0.5, and 𝜖𝑜𝑢𝑡 is chosen as 1 and 80, respective, in vacuum and water state. In the super-Gaussian PB model, 
we select 𝜖𝑔𝑎𝑝 = 8, 𝑚 = 2, and the edge value is taken as 8. A default edge value is used in the rMIB.

Five energy values are reported for each protein in Table 9 – three are generated by the super-Gaussian model and two by the 
rMIB. One can first see that the super-Gaussian energies are usually weaker than the rMIB energies, i.e., the super-Gaussian energy 
has a smaller magnitude. This is primarily due to the underlying PB model, because with a transition band of the width 3Å, the 
electrostatic interactions between solute and solvent are weaker in the super-Gaussian model. A similarly phenomenon has been 
observed in [41] between the super-Gaussian model and MIBPB package [8,19], which is another MIB method based solver for the 
sharp interface PB model. In fact, it has been shown in [41] that the Pearson correlation coefficient between the super-Gaussian and 
MIBPB energies is as high as 0.791. For the present study, there also exist some correlations between the super-Gaussian and rMIB 
energies, as can be seen from Table 9.

What is more interesting in the present work is the energy difference between the LPB and NPB models. For the rMIB package, 
it can be seen from Table 9 that the difference between Δ𝐸𝐿 and Δ𝐸𝑁1 is very small. However, for the super-Gaussian (SG) model, 
a large difference can be seen between Δ𝐸𝐿 and Δ𝐸𝑁1. When the second and third terms are included in the NPB energy, the 
difference between Δ𝐸𝐿 and Δ𝐸𝑁 becomes slightly smaller. To quantify the difference, we calculate the relative difference between 
the LPB and NPB energies as|Δ𝐸𝐿 −Δ𝐸𝑁 ||Δ𝐸𝐿| ,

and express this quantity in percentage. The results are plotted in Fig. 7 for rMIB NPB first term, SG NPB first term, and SG NPB. 
The percentages of the rMIB NPB first term are almost invisible in Fig. 7, because the maximal relative difference between Δ𝐸𝐿
and Δ𝐸𝑁1 is just 0.42% with the average being 0.12%. Nevertheless, by also considering the first term only in the NPB energy, the 
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super-Gaussian model has a huge difference between Δ𝐸𝐿 and Δ𝐸𝑁1, with the relative difference being as high as 20.41% and the 
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Table 9

Electrostatic free energy (kcal/mol) of 25 proteins calculated by the super-Gaussian (SG) and rMIB 
packages. Here Δ𝐸𝐿 and Δ𝐸𝑁 denotes, respectively, the EFE of the LPB and NPB model. In the rMIB 
package, the NPB energy is calculated by the first term only [20], which is denoted as Δ𝐸𝑁1 here. For 
a comparison, Δ𝐸𝑁1 of the SG model is also reported.

Electrostatic free energy

PDB Atom Super-Gaussian rMIB

-ID Number Δ𝐸𝐿 Δ𝐸𝑁1 Δ𝐸𝑁 Δ𝐸𝐿 Δ𝐸𝑁1

1AHO 962 -145.6967 -162.5832 -153.3686 -889.4498 -890.1712

1C75 985 -550.4969 -560.3678 -554.4116 -1423.2635 -1424.4291

1J0P 1597 -787.8966 -817.4963 -801.9987 -2382.2031 -2384.6877

1TG0 1029 -1632.6183 -1661.4553 -1647.0983 -2712.4644 -2715.3713

1X8Q 2815 -355.8890 -428.5199 -397.8534 -2456.7551 -2462.1286

1CBN 639 -50.8994 -56.1248 -52.8387 -367.3665 -367.5917

1G6X 888 -522.6884 -535.4013 -528.1621 -1314.3318 -1315.4019

1IUA 1207 -146.8194 -159.8717 -152.7182 -927.3580 -929.3352

1L9L 1226 -1478.0643 -1506.4778 -1492.0616 -2784.9215 -2787.8069

1M1Q 1265 -685.3718 -705.4891 -694.2581 -1961.0643 -1962.1155

1NWZ 1912 -576.6918 -606.9233 -589.5955 -2031.1999 -2032.7953

1OK0 1076 -396.0022 -416.1228 -405.6546 -1140.8690 -1142.2690

1TQG 1660 -654.0592 -666.4268 -658.6276 -1686.3357 -1687.5332

1VB0 913 -198.5197 -210.2443 -204.0329 -888.9493 -889.2464

1VBW 1056 -740.8630 -758.4981 -749.0084 -1570.6146 -1571.9321

1W0N 1756 -454.3624 -528.2604 -503.2634 -1700.7606 -1704.6462

1X6X 1732 -284.9659 -301.6766 -291.5538 -1514.9968 -1515.8009

1XMK 1268 -220.7955 -239.6277 -229.7723 -1204.0442 -1204.9545

1ZUU 868 -360.8595 -379.1776 -369.9746 -1243.7473 -1245.4332

1ZZK 1252 -296.0566 -319.2798 -306.7525 -1312.4640 -1314.3494

2FDN 731 -781.1547 -805.4666 -795.1820 -1419.3870 -1425.3579

2FMA 924 -253.8485 -264.6598 -258.1078 -1034.6278 -1035.2162

2FWH 1830 -539.6444 -564.2968 -550.6882 -1768.8684 -1771.2936

2H5C 2755 -631.1868 -657.3317 -642.3025 -1832.1679 -1836.6080

2IDQ 1596 -378.0852 -400.6308 -388.0415 -1500.1329 -1501.8026

Fig. 7. Relative energy difference in percentage between the LPB and NPB energies for a set of 25 proteins.

average being 6.08%. The energy difference is slightly reduced, when the second and third terms are considered in Eq. (27). Now, 
the maximal relative difference between Δ𝐸𝐿 and Δ𝐸𝑁 is 11.79% and the mean value is 2.96%.

The significantly different patterns shown in Fig. 7 are primarily due to the underlying PB models. It seems that for the sharp 
interface PB models, the energy difference between linearized and nonlinear cases is always small. For the present rMIB package, the 
mean value of the relative differences between Δ𝐸𝐿 and Δ𝐸𝑁1 for 25 proteins is as small as 0.12%. To put things in perspective, we 
also consider the LPB and NPB energies of the sharp interface Kirkwood sphere, whose benchmark values are reported in [2]. For a 
20

Kirkwood sphere with a unit charge 𝑞 = 1, radius being 2Å, and other parameters being the same as in the present study, the LPB EFE 
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Fig. 8. Plot of the potential 𝑢 of the protein 1X8Q along the 𝑥 direction with ℎ = 0.5, 𝑦 = 33.45, and 𝑧 = 32.8. (a) Super-Gaussian; (b) rMIB.

is known analytically as Δ𝐸𝐿 = −82.188683337726175 kcal/mol. For the same set of parameters, the NPB EFE calculated by the 1D 
boundary value problem is Δ𝐸𝑁1 = −82.212210771856221 kcal/mol, whose error is estimated to be about 2.4 ×10−12 [2]. Therefore, 
the relative difference between Δ𝐸𝐿 and Δ𝐸𝑁1 for the Kirkwood sphere is 0.0286%. We note that the Kirkwood sphere NPB energy 
Δ𝐸𝑁1 for other parameters can be calculated by using the MATLAB code available at https://szhao .people .ua .edu /research .html.

The present study on sharp interface PB energies justifies why the NPB model is not popular in the literature. Indeed, for the sharp 
interface PB model, when the NPB energy is so close to the LPB energy, it does not make much sense to pay extra computational 
cost to solve the nonlinear system. However, for the diffuse interface and heterogeneous dielectric PB models, the story could be 
different. For the super-Gaussian PB model, the relative difference between the LPB and NPB energies could be as high as 20.41% or 
11.79%, as shown in Fig. 7. In Section 3.1, the benchmark energy values of the diffuse interface Kirkwood sphere are generated by 
solving 1D boundary value problems. In particular, the LPB and NPB energy is calculated as Δ𝐸𝐿 = −68.884489814969 kal/mol and 
Δ𝐸𝑁 = −73.415356786147 kcal/mol, respectively, for the same set of parameters. Thus, the relative energy difference of the diffuse 
interface Kirkwood sphere is 6.5775%, which is comparable to the mean values of the super-Gaussian energies of 25 proteins, i.e., 
2.96% for Δ𝐸𝑁 or 6.08% for Δ𝐸𝑁1. Therefore, for diffuse interface and Gaussian dielectric PB models, the NPB energy could play a 
significantly different role than the LPB energy in real biological applications.

To understand the relationship between the NPB and LPB energies, let us focus on the Kirkwood sphere in both sharp interface 
and diffuse interface settings. In both settings, the reaction field potential 𝑢𝑅𝐹 can be regarded as a 1D function in terms of 𝑟. Let us 
consider the trend of function 𝑢𝑅𝐹 (𝑟) in a reversed manner. As 𝑟 decreases from infinity to zero, 𝑢𝑅𝐹 grows from zero to a constant 
value inside the Kirkwood sphere for both sharp and diffuse settings and for both LPB and NPB models. By considering only the first 
term in Eqs. (29) and (27), Δ𝐸𝐿 and Δ𝐸𝑁1 are essentially determined by the constant value of 𝑢𝑅𝐹 inside the Kirkwood sphere 
[2]. For the sharp interface PB model, the closeness of Δ𝐸𝐿 and Δ𝐸𝑁1 implies that the reaction field constants for the LPB and 
NPB models are very close, while in the diffuse interface PB model, such two constants are quite different. Recall that for the sharp 
interface PB model, there are just two subdomains, i.e., solute and solvent regions. In the solvent region, 𝑢𝑅𝐹 is vanishing at the 
infinity or on the right, and is limited on the left by the reaction field constant. Since two reaction field constants for LPB and NPB 
cases are very close on the left, one can conclude that the reaction field potentials in two cases are also very similar in the solvent 
subdomain. In other words, the grow rates of 𝑢𝑅𝐹 for both LPB and NPB cases as 𝑟 becomes smaller, are similar in the solvent region, 
even though such rates are governed by two different equations, i.e., the LPB and NPB equations. The same argument can be applied 
to the subdomain Ω𝑒 for the diffuse interface Kirkwood sphere, because with 𝑆 = 0, the diffuse interface PB equation in Ω𝑒 is the 
same as the sharp interface PB equation in the solvent region. Thus, for the diffuse interface Kirkwood sphere, the grow rates of 
𝑢𝑅𝐹 for both LPB and NPB cases should be very close in Ω𝑒 . However, since the reaction field constants for the LPB and NPB are 
significantly different in Ω𝑖, the grow rates of 𝑢𝑅𝐹 in the transition layer Ω𝑡 should be significantly different for both LPB and NPB 
cases. In Ω𝑡, the (1 − 𝑆) term behind 𝑢 or sinh(𝑢) plays an important role in amplifying the grow rate when 𝑟 is decreasing or decay 
rate when 𝑟 is increasing. In summary, it is believed that the transition layer Ω𝑡 and the (1 − 𝑆) term are the major factors that 
introduce a large difference between the NPB and LPB energies in the diffuse interface and super-Gaussian PB models.

To further examine the energy difference, the potential 𝑢 of a protein (PDB ID: 1X8Q) is depicted in Fig. 8. In order to compare 
the super-Gaussian and rMIB models, we have manually changed the domain of the super-Gaussian package such that it is the same 
as that in the rMIB package. By taking ℎ = 0.5, a line plot along the 𝑥 direction for 𝑦 = 33.45 and 𝑧 = 32.8 is shown for both LPB 
and NPB potentials. It can be seen in Fig. 8 the potentials in both charts have a similar pattern, while the magnitudes of the rMIB 
potentials are higher. In the rMIB case, the LPB and NPB potentials are almost identical everywhere. For the super-Gaussian model, 
the difference between the LPB and NPB potentials is initially invisible in the solvent region Ω𝑒. However, such a difference grows 
in the transition region Ω𝑒 and eventually becomes quite significant throughout the solute region Ω𝑖. Such a pattern agrees with that 
in the diffuse interface Kirkwood sphere, and confirms the above analysis that the transition layer Ω𝑡 and the (1 −𝑆) term introduce 
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the large difference between the NPB and LPB energies for the super-Gaussian PB model.
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4. Concluding remarks

In this paper, several Poisson-Boltzmann (PB) energy functionals in terms of the dimensionless potentials have been formulated 
for water and vacuum phases and in both nonlinear and linearized settings. Moreover, alternative energy forms have been proposed 
to calculate the electrostatic free energy (EFE) without involving the electrostatic stress term. Rigorous mathematical derivation of 
such alternative energy forms is offered. While the alternative energy forms are computationally better than the definition based on 
energy functionals, they involve surface integrals, whose values are domain dependent. A systematic study has been conducted in this 
paper to evaluate such integrals and their dependence on domain size, as well as mesh step size. Our conclusion is that the inclusion 
of surface integrals of the dimensionless potential 𝑢 in the water phase does not influence the calculated EFE too much, even for a 
tight domain. Thus, the surface integrals presented in the alternative energy forms are not recommended to be computed in practice, 
and only the first term and the volume integrals should be calculated for the EFE. We note that the proposed energy functionals 
and EFE forms are validated by considering diffuse interface and super-Gaussian PB models in this work, but they can be directly 
applied to other PB models, including the classical sharp interface or two-dielectric PB model. In fact, it is known that as the GCS 
parameter 𝜎 goes to zero, the surface function 𝑆(𝐫) will converge to a Heaviside function representing the solute-accessible surface 
(SAS). Under such a limiting process, the convergence of the diffuse interface PB model to the sharp interface PB model, including 
convergence of the electrostatic potential and free energy, has been rigorously proved in [36]. Following the same principal, all PB 
energy functionals and EFE forms developed in this work could be similarly formulated for the sharp interface PB model.

The singular charges in the source term of the PB equation can be discretized directly by the trilinear method, or can be treated 
analytical by using the modern regularization approaches [36,39–41]. The alternative energy forms in the regularization formulation 
have also been developed. A comparison between the trilinear and regularization methods for calculating the EFE has been carried 
out in solving the nonlinear PB (NPB) equation of the super-Gaussian PB model. Both methods perform well in various tests, and the 
convergence of the trilinear energy with respect to the domain size is usually better than that of the regularization method. However, 
when the error cancelation in the first term of the energy forms is lost in unsynchronized rotation or shifting, the trilinear method 
produces a huge error in the EFE calculation, while the regularization is free of the artificial grid energy in these studies.

For a set of 25 proteins, a comparison between the linearized PB (LPB) energies and the NPB energies have been considered for 
both the super-Gaussian PB model and the sharp interface PB model implemented in the rMIB package [20]. It is found that the LPB 
and NPB energies are very close in the sharp interface PB model, while they are quite different in the diffuse interface PB model [39]
and super-Gaussian PB model [21,41]. In these smooth dielectric PB models, a transition layer Ω𝑡 with width 3Å has been inserted 
as a smooth solute-solvent boundary, and the nonlinear hyperbolic Sine term has the coefficient (1 − 𝑆), where the smooth surface 
function 𝑆 changes from 0 to 1 in Ω𝑡. In some sense, the smooth solute-solvent boundary pushes the solute atoms and solvent ions 
away from each other. Physically, this reduces the electrostatic interactions between solute and solvent. Thus, the free energies of 
the diffuse interface and super-Gaussian models are weaker than those of the sharp interface, i.e., they have smaller magnitudes. On 
the other hand, it is interesting to observe in this study that the smooth solute-solvent boundary amplifies the difference between 
LPB and NPB potentials in Ω𝑡. Consequently, the NPB energy of the diffuse interface and super-Gaussian PB models is significantly 
different from the LPB energy. In the literature, the NPB model is always overshadowed by the LPB model, because their energies 
in the classical PB setting are very close. The present study indicates that the NPB model deserves more attention in the smooth 
dielectric setting.

Since many numerical studies of the PB equation are conducted in the normalized form in terms of the dimensionless potential, 
the proposed energy forms are expected to have an impact to the field. Our energy forms are designed such that one can directly plug 
in the numerically approximated dimensionless potential to calculate the energy in the correct unit. This avoids the potential artifact 
involved in converting the unit of the potential back and forth. For example, in the rMIB package [20], the normalized PB equation 
is solved for the dimensionless potential, and a conversion is conducted for calculating the EFE. In particular, the LPB energy of the 
rMIB package has been benchmarked by the Kirkwood sphere [20], and a second order convergence has been shown towards the 
analytical energy. For the nonlinear case, the Kirkwood sphere does not admit an analytical energy. In [2], a benchmark NPB energy 
calculated by the first term only is numerically generated by solving the one-dimensional (1D) NPB model. However, it is found in 
[2] that the rMIB NPB energy does not converge to the benchmark value. While the non-convergence of the rMIB NPB energy could 
be due to various reasons, the unit system and conversion could be an issue. Nevertheless, a full scale study on the rMIB package is 
beyond the scope of the present paper, and will be explored elsewhere.
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