
ZT �
S21

1 � S11
� 50.

The circuit using emitter-gain-peaking capacitors has 65-dB� gain
and 8-GHz 3-dB bandwidth for ZT, but the circuit without emitter-
peaking capacitors has the same gain with 4-GHz 3-dB bandwidth
for ZT. The Z21 data in Figure 5 also shows that the emitter-
peaking capacitors have an influence upon the Z21 response.
Figure 6 illustrates the noise and power performances of both
circuits. Both designs have similar noise figures, which are less
than 2.8 dB for frequencies below 6 GHz. OP1dB and OIP3 of both
circuits as functions of frequency are also illustrated in Figure 6.
OP1dB and OIP3 are 7 and 20 dBm at 2 GHz, respectively. Both
OP1dB and OIP3 decrease when the frequency increases. There is
no apparent power-performance difference between the two de-
signs.

4. CONCLUSION

In this paper, 28-dB gain, DC to 6-GHz GaInP/GaAs shunt-series
shunt-shunt feedback wideband amplifiers have been demon-
strated. The experimental results show that power gain is 28 dB
and input/output return loss is below 12 dB from DC to 6 GHz for
the wideband amplifier without emitter-capacitive peaking. An
emitter-capacitive peaking technique can extend the 3-dB power-
gain bandwidth at the cost of lower input/output return loss. The

circuit using peaking capacitors has 8-GHz 3-dB power-gain band-
width, while S11 reaches �8 dB and S22 reaches �9 dB at 8 GHz.
Both circuits have similar noise and power performances. The
noise figures of both circuits are less than 2.8 dB for frequencies
below 6 GHz.
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ABSTRACT: We propose a tensor product derivative matching
(TPDM) method to restore the accuracy of high-order finite difference
time-domain (FDTD) schemes of computational electromagnetics (CEM)

Figure 4 Measurement results of reverse-transmission gain and output-
return loss for GaInP/GaAs HBT wideband amplifiers with and without
emitter peaking

Figure 5 Measured ZT and Z21 of GaInP/GaAs HBT wideband ampli-
fiers with and without emitter peaking

Figure 6 Measured noise figures and power performances of GaInP/
GaAs HBT wideband amplifiers with and without emitter peaking
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with material interfaces in two spatial dimensions (2D). By making use
of fictitious points, the TPDM method locally enforces the physical-jump
conditions at material interfaces in a preprocessing stage to arbitrarily
high orders of accuracy in principle, based on a structured grid. The
proposed method encompasses a variety of schemes of different orders
in a single code. In fact, numerical orders from 2 to near 16 are con-
firmed in the present study. To the best of our knowledge, such high
orders have not been reported in the literature for CEM problems in-
volving material interfaces. The limitation and applicability of the
present scheme are also analyzed in detail. © 2004 Wiley Periodicals,
Inc. Microwave Opt Technol Lett 43: 69–77, 2004; Published online in
Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.
20378

Key words: Maxwell’s equations; finite-difference time-domain meth-
ods; material interfaces; high-order methods

1. INTRODUCTION

The finite-difference time-domain (FDTD) method was proposed
by Yee [1] near forty years ago and was generalized by Taflove [2]
and many others [3–19]. Although the original FDTD method is
very simple, free of dissipative error, and has very low cost per
grid node, it suffers from high dispersive error [3], and severe
accuracy reduction at geometries and material interfaces [4]. Much
improvement has been made in the past two decades to improve
the staircased approximation for boundaries and geometries [5–7]
to reduce the dispersive error [3, 8–17] and to restore the accuracy
at material interfaces [4, 18, 19]. As a result, FDTD methods are
now the main workhorse of computational electromagnetics
(CEM) in the time domain for a variety of scientific and engineer-
ing applications in micro/nano devices, near field optics, antennas,
radar cross section, wave propagation and scattering. However, for
electromagnetic wave propagation involving high frequency
waves and/or large domain, the present FDTD techniques are
insufficient. There is still a pressing need for a generalized FDTD
method which is of high order, and thus well suitable for large
scale computations involving complex geometries, boundaries,
and material interfaces. Here, by high order, we refer to schemes
that are of order four or higher.

Important contributions to the field were made by Yefet and
Turkel [20], Yefet and Petropoulos [21], Xie, Chan and Zhang [22,
23], and Hesthaven [4], who generalize the embedding schemes [4,
18, 19] to fully fourth-order FDTD methods on a simple structured
grid with material interfaces. The significant achievements of these
high-order embedding schemes [20–23] is that they enforce phys-
ical jump conditions at material interfaces up to high-order at a
preprocessing stage, so that fourth-order convergence is uniformly
assured over the entire domain. Subtle interface techniques with
one-sided difference approximations and extrapolations are re-
quired in these methods. We refer to a recent review [4] for the
accomplishment, difficulty, and challenge in high-order time-do-
main methods.

The feasibility of extending the previous embedding FDTD
schemes beyond the 4th order for treating material interfaces was
not very clear [4] until the most recent work [24], which achieved
more than 10th-order accuracy. Motivated by the use of fictitious
points (FPs) in a block pseudospectral (BPS) method [25, 26], a
hierarchical derivative matching (HDM) method [24] was pro-
posed to systematically enforce the physical-jump conditions at
material interfaces to arbitrary orders of accuracy in principle.
Nevertheless, we note that the recursive nature of the HDM
scheme restraints its ability for attaining 12th orders for a few test
examples. It is therefore of great interest to develop a systematic
approach to correctly enforce the physical-jump conditions at
material interfaces to even higher orders. To this end, we present

herein a tensor-product derivative matching scheme, which can
greatly exceed the numerical order attained by the previous FDTD
methods.

This paper is organized as follows. Section 2 is devoted to the
theory and algorithm. A brief description of Maxwell’s equations
and boundary conditions is presented to introduce the problem. A
short review is given to an implicit derivative matching (IDM)
method, which underpins the theoretical foundation of both the
previous HDM and the present TPDM method. The latter is
described in detail. Numerical experiments are carried out to
validate the proposed method in section 3. The limitation of the
approach is also analyzed in detail, followed by the conclusion.

2. THEORY AND ALGORITHM

For the sake of integrity and establishing notation, we review the
method of implicit derivative matching in 1D cases [24] before the
TPDM method is introduced.

2.1 Governing Equations and Boundary Conditions
To illustrate our method, it is sufficient to consider the vector form
of the time-dependent Maxwell’s equations

�q
�t

� Aq, (1)

where

q � �Ez

Hy
�, A � � 0

1

�

�

�x
1

�

�

�x
0 � (2)

for the 1D modeling and

q � �Hx

Hy

Ez

�, A � �
0 0 �

1

�

�

�y

0 0
1

�

�

�x

�
1

�

�

�y

1

�

�

�x
0

� (3)

for the 2D study. Here, Ez and H� (� � x, y) are components of
the electric- and magnetic-field intensities, respectively, � and �
are the electric permittivity and magnetic permeability, respec-
tively. A nondimensional form of the equations is considered, that
is, � � � � 1 in free space.

When there is material interfaces, the solution to the transverse
electromagnetic (TEM) mode [Eq. (2)] and transverse magnetic
(TM) mode [Eq. (3)] requires special treatment in order to attain
high orders. At an interface between two media, say, medium 1
and medium 2, the boundary conditions can be expressed mathe-
matically as

n̂ � �E1 � E2� � 0, n̂ � �H1 � H2� � 0, (4)

for electric fields and magnetic fields, respectively. Here n̂ is the
unit vector normal to the interface, pointing from medium 2 into
medium 1. A special case with one of the media, say medium 2,
being a perfect electric conductor (PEC), is of practically impor-
tance. The PEC boundary conditions reduce to a simple form,
given by

70 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 43, No. 1, October 5 2004



n̂ � E � 0, (5)

since a perfect conductor cannot sustain a field inside.

2.2 Method of Implicit Derivative Matching
We start with simple 1D cases to introduce our scheme. We
assume that the 1D domain under study consists of two dielectric
media, with the interface at x � �. As a result, the coefficient
matrix A of Eq. (1) takes different values in media 1 and 2, that is,
A � A1 if x � � and A � A2 if x � �. We impose physical-jump
conditions of order p at the interface

A1
pq���, t� � A2

pq���, t�, p � 0, 1, 2, . . . , (6)

where

A1
pq���, t� � 	A1

pq�x, t�
x3��, A2
pq���, t� � 	A2

pq�x, t�
x3��.

These jump conditions relate the electromagnetic fields across the
interface and their derivatives as taken from two sides of the
interface. These conditions are the starting point for constructing
the method of implicit derivative matching (IDM) [24]. We use
Figure 1 to illustrate our idea. Let us denote the function values
under consideration (either Ez or Hy) at original and fictitious
points as gi and fi (for i � 1, 2, . . . , 2m), respectively. For
simplicity, a uniform, staggered grid is assumed in the present
study. It is important to note that the interface x � � needs not to
be laid on the grid in the IDM method. For a given number of FPs,
m, up to (2m � 1)th-order physical-jump conditions are employed
to determine the representation weights of 2m FPs. As in our
previous work [24], standard central finite-difference (FD) approx-
imations are utilized to discretize these 2m jump conditions. The
resultant discretized equations then are evaluated at each grid point
to form 2m � 2m algebraic equations, which could be solved to
determine 2m � 2m unknowns.

To illustrate the idea, we consider the second-order jump con-
dition for Ez,

1

�1
Ez

�2����, t� �
1

�2
Ez

�2����, t�, (7)

where the superscript denotes the 2nd-order derivative. Eq. (7) can
be discretize by using the FD approximation

1

�1
� �

i�1

m

w2,igi 	 �
i�m�1

2m

w2,ifi� �
1

�2
� �

i�1

m

w2,ifi 	 �
i�m�1

2m

w2,igi� ,

(8)

where w2,i, i � 1, 2, . . . , 2m, are the standard FD weights for
the 2nd-order derivative approximation. It is obvious from Eq. (8)
that the splitting in the summation reflects the division over the
interface (see Fig. 1). We note that, since a uniform grid and the
central scheme are used, the sets of FD weights of the left- and
right-hand sides of Eq. (8) are the same.

The rest of the job is to derive a set of desired algebraic
equations for being used in an implicit scheme. To this end, we
rewrite Eq. (8) as

1

�1
�

i�m�1

2m

w2,ifi �
1

�2
�
i�1

m

w2,ifi �
1

�2
�

i�m�1

2m

w2,igi �
1

�1
�
i�1

m

w2,igi.

(9)

Note that the right-hand side of Eq. (9) contains known values.
We look for a preprocessing scheme so that it is not necessary

to resolve fi at each time step. To this end, let us write

fi � �
j�1

2m

ri, jgj, for i � 1, 2, . . . , 2m, (10)

where ri, j are representation coefficients. It is convenient to adopt
a matrix representation for Eq. (10), given by

F � RG, (11)

where F � ( f1, f2, . . . , f2m)T, G � ( g1, g2, . . . , g2m)T, and
R � (ri, j)i, j�1

2m . Our task is to determine the unknown coefficient
matrix R. It is convenient to consider the rows of R as new
variables, Rj � (rj,1, rj,2, . . . , rj,2m) for j � 1, 2, . . . , 2m. To
determine the coefficients/elements of R is equivalent to solve a
vector R̂, given by

R̂ � �R1, R2, . . . . . . , R2m�T

� �r1,1, r1,2, . . . , r1,2m, r2,1, r2,2, . . . , r2,2m, . . . . . . , r2m,1,

r2m,2, . . . , r2m,2m�T (12)

from an algebraic system. It is noted that the dimension of the
matrix system for determining R̂ is (2m)2, which is high when m
is large. To resolve fj and gj, we define 2m vectors Ij as the rows
of a 2m � 2m identity matrix I, that is, I1 � (1, 0, 0, . . . , 0),
I2 � (0, 1, 0, . . . , 0), . . . I2m � (0, 0, 0, . . . , 0, 1). This leads
to the following symbolical representations:

fj � RjG and gj � IjG. (13)

Substituting two relations in Eq. (13) into Eq. (9), we obtain

1

�1
�

i�m�1

2m

w2,iRiG �
1

�2
�
i�1

m

w2,iRiG

�
1

�2
�

i�m�1

2m

w2,iIiG �
1

�1
�
i�1

m

w2,iIiG. (14)

Finally, by eliminating the common abstract variable G, we end up
with 2m algebraic equations from the jump condition of Eq. (7):Figure 1 Illustration of FPs and notation used in the IDM method
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1
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2m

w2,iRi
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1

�2
�
i�1

m

w2,iRi
T �

1

�2
�

i�m�1

2m

w2,iIi
T �

1

�1
�
i�1

m

w2,iIi
T.

(15)

These equations have the desirable feature of being independent of
the field values. Therefore, they can be used in a preprocessing
stage. Algebraic equations for other jump conditions can be sim-
ilarly derived.

It is interesting to note that the function values on FPs, that is,
{ fi}i�1

2m , are never evaluated in the present study. By means of
representation coefficients ri, j, we locally modify the differential
stencil near the material interface at the beginning of the compu-
tation, as in the embedding FDTD schemes [4, 18–23]. Therefore,
this method is referred as an implicit derivative matching (IDM)
[24].

2.3 Derivative Matching in Higher Dimensions
We focus mainly on the 2D studies in the present paper. It is noted
that the idea underlying the present 2D studies can be similarly
extended to a general 3D scenario. In a 2D domain, it is supposed
that the media are nonmagnetic with � � 1 and are homogeneous
in the y direction. Similar to the 1D cases, the electric permittivity
� is a piecewise constant with two values �1 and �2 in the x
direction. Again, we assume that the interface is at x � �. The case
in which there are multiple interfaces can be similarly treated. The
notations for A1 and A2 can be similarly defined. Following the
convention of CEM, a 2D staggered grid is used for the fields Ez,
Hx, and Hy [2, 15, 16].

We first establish physical-jump conditions at x � �. It is
worthwhile to note that we have three conditions for three field
components in each order of jump conditions. Among them, only
two conditions are employed in the DM modeling, because such a
modeling is carried out for Ez and Hy only. For the field compo-
nent Hx, since a derivative of Hx with respect to x is not required
to be evaluated in the resolution of the TM equations (1) and (3),
it is not necessary to conduct a DM modeling for Hx. In general,
the nth-order jump condition is given as

A1
nq���, t� � A2

nq���, t�, (16)

where the 0th-order jump condition states that the fields are con-
tinuous across the following interface:

q���, t� � q���, t�. (17)

For each n, there are a set of three equations. The first two sets of
matching conditions can be easily implemented numerically. How-
ever, starting from n � 2, one encounters terms with cross
derivatives, such as (�2/� x� y) Hy, that are required to be dis-
cretized. To approximate a cross derivative with the respective
lengths of differential kernels given by 2Mx and 2My, respec-
tively, a total number of 4MxMy grid points is involved. Obvi-
ously, the computational cost is then extremely high, especially
when Mx and My are quite large.

Two methods, a quasi-4th-order derivative matching (Q4DM)
scheme and a 2D hierarchical derivative matching (HDM) method,
were proposed to overcome the aforementioned difficulty [24].
The Q4DM is a direct extension of the 1D IDM scheme, that is,
symmetric FD weight functions are used with fictitious grid points
to attain high-order accuracy. To avoid the cross derivatives, terms
in the jump conditions that involve only derivatives normal to the
interface are discretized with both appropriate fictitious grid points
and original grid points. While other terms that involve derivatives
tangential to the interface are discretized on the original grid
points. Numerical tests indicate that the Q4DM is essentially of 4th

order in accuracy. The possibility of extending the Q4DM scheme
to higher orders was examined. Apart from the associated com-
plexity, such a generalization considering high-order jump condi-
tions might not be able to achieve a high order of convergence
eventually, simply because the increasing number of cross deriv-
atives being discretized on the original grid are actually discon-
tinuous across the interface.

The 2D HDM is an iterative scheme for gaining high-order
accuracy. At each stage of the iteration, four jump conditions are
employed, that is, the 0th- and 1st-order jump conditions of Hy and
the 1st- and 2nd-order jump conditions of Ez. The x direction
derivatives involved in these four conditions are discretized via
one-sided FD approximations. Apart from that, two y direction
derivatives also involve in these conditions, that is, (�/� y) Hx(�)
and (�2/� y2) Ez(�). Note that these two terms are continuous at

TABLE 1 L2 Errors of the FDTD Methods with the TPDM at Time t � 1 with �t � 2.5 � 10�4 (My � 8)

Mx (Nx, Ny)

Ez Hx Hy

Error Rate Error Rate Error Rate

1 (26, 21) 1.57(�2) 5.96(�3) 1.64(�2)
(51, 41) 3.93(�3) 1.983 1.52(�3) 1.967 4.22(�3) 1.956

(101, 81) 9.99(�4) 1.993 9.63(�5) 1.996 2.67(�4) 1.994

2 (26, 21) 3.53(�4) 1.38(�4) 3.97(�4)
(51, 41) 2.25(�5) 3.970 8.70(�6) 3.985 2.52(�5) 3.978

(101, 81) 1.42(�6) 3.995 5.45(�7) 3.996 1.58(�6) 3.993

4 (26, 21) 4.10(�7) 1.61(�7) 4.80(�7)
(51, 41) 1.66(�9) 7.949 6.46(�10) 7.964 1.94(�9) 7.953

(101, 81) 6.56(�12) 7.984 2.54(�12) 7.992 7.63(�12) 7.988

6 (26, 21) 6.84(�10) 2.71(�10) 8.20(�10)
(51, 41) 1.73(�13) 11.948 6.76(�14) 11.969 2.07(�13) 11.949

(101, 81) 1.33(�14) 3.705 5.68(�15) 3.573 1.11(�14) 4.219

8 (26, 21) 1.32(�12) 5.28(�13) 1.62(�12)
(51, 41) 9.17(�15) 7.169 4.16(�15) 6.990 9.29(�15) 7.447

(101, 81) 1.44(�14) �0.650 5.19(�15) �0.320 1.05(�14) �0.182
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the interface x � �. For simplicity, we assume that the interface
x � � is laid on some Ez nodes. By using such a body-conformed
structured grid, the evaluation of two y derivatives can be quite
straightforward and extremely accurate. Nevertheless, it is also
noted that the HDM scheme is not suitable for general Cartesian
grids. It is only applicable to body-conformed structured grids. In
the previous numerical study, it was found that the 2D HDM
scheme could attain as high as the 12th-order for wave propagation
over interfaces. However, the accuracy was limited by the iterative
nature of the scheme. Therefore, we propose an alternative ap-
proach in the next subsection.

2.4 Tensor-Product Derivative Matching Scheme
It is commented in the 1D BPS method [25] that it is straightfor-
ward to extend the explicit DM method into tensor-product do-
mains in higher dimensions. However, an alternative DM model-
ing is conducted in the 2D BPS studies [26]. This may be due to
great difficulties associated with the 2D DM modeling involving
mixed derivatives, as discussed in detail in [24]. In this subsection,
we further explore the extension of the 1D DM method to higher
dimensions by using the principle of tensor products.

We start by a careful investigation to the general form of the
analytical solution of 2D Maxwell’s equations (1) and (3). For
simplicity, we only consider Ez component in the present discus-
sion. Suppose the electric-field density E � (Ex, Ey, Ez) is time
harmonic, and can be represented as a plane-wave form, given by

Ez� x, y, t� � A exp�i
xx 	 i
yy 	 i
t�, (18)

where 
x and 
y are the x- and y-components of physical wave-
number, and 
 is the wave angular frequency. For TM modes, one
general form of the analytical solutions of Eq. (1) can be given as

Ez� x, y, t� � A sin�
xx�sin�
yy�cos�
t�, (19)

which is only one component of the plane wave Eq. (18), and with
appropriate scaling, it is easy for Ez in Eq. (19) to satisfy the PEC
conditions at boundaries.

On the other hand, it can be derived from Maxwell’s equations
(1) that Ez satisfies the 2D wave equation

�
�2Ez

�t2 �
�2Ez

� x2 	
�2Ez

� y2 . (20)

By substituting Eq. (19) into Eq. (20), it can be derived that

�
2 � 
x
2 	 
y

2.

In general, 
 is a scalar. For the present domain setting, we know
that � is invariant along the y direction, so that 
y is a constant
everywhere. Along the x direction, the electric permittivity � is a
piecewise constant with two values: �1 and �2. Therefore, there are
two corresponding 
x values and they satisfy

�1

2 � 
x,1

2 	 
y
2,

�2

2 � 
x,2

2 	 
y
2.

Correspondingly, the field Ez can be rewritten as

Ez� x, y, t� � �A1sin�
x,1x�sin�
yy�cos�
t� for x � �,
A2sin�
x,2x�sin�
yy�cos�
t� for x � �. (21)

Based on the solution form of Eq. (21), we investigate the phys-
ical-jump conditions of Ez. As discussed in [24], at the interface
x � �, we obtain Ez and its first derivative with respect to x is
continuous:

Ez���, t� � Ez���, t�,

�

� x
Ez���, t� �

�

� x
Ez���, t�.

These two conditions are sufficient to determine the values of
magnitudes A1 and A2, if 
x,1 and 
x,2 are known.

It is of great interest to consider the 2nd-order jump condition,
which originally involves the y derivative as in Eq. (16). In the
present context, it can be verified from Eq. (21) that the second

Figure 2 Log-log plots of the L2 errors in Ez at time t � 1 by using the
FDTD method for different Mx values (�t � 2.5 � 10�4 and My � 8):
(a) 2D HDM method with l � 8; (b) TPDM method
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derivative of Ez with respect to x is discontinuous at the interface;
furthermore, we obtain the relation

1


x,1
2

�2

� x2 Ez���, t� �
1


x,2
2

�2

� x2 Ez���, t�. (22)

It is interesting to note that condition (22) is almost identical to the
2nd-order jump condition for Ez in the 1D case, that is, Eq. (7),
except that �1 and �2 are replaced with 
x,1

2 and 
x,2
2 , respectively.

In fact, it can be derived that the field Ez given by Eq. (21) satisfies
any-order jump condition for Ez, as in the 1D case after replacing
�1 and �2 with 
x,1

2 and 
x,2
2 , respectively. This set of jump

conditions can then be used to determine as many FPs along the x
direction as one wants, in principle. This suggests that it is possible
to extend the 1D DM method directly to 2D tensor-product geom-
etries by simply considering parameters 
x,1

2 and 
x,2
2 , but not

permittivities �1 and �2. For example, we can rewrite condition
(22) as

�2

� x2 Ez���, t� �

x,1

2


x,2
2

�2

� x2 Ez���, t�. (23)

It is clear from Eq. (23) that the factor R � 
x,1
2 /
x,2

2 determines
the relationship. In the 1D case, we have 
y � 0. Thus,

R �

x,1

2


x,2
2 �

�1

2 � 
y

2

�2

2 � 
y

2 �
�1


2

�2

2 �

�1

�2
. (24)

In other words, the factor R solely depends on the material per-
mittivities in the 1D cases. This actually justifies the soundness of
the present 2D considerations. On the other hand, by itself, Eq.
(24) also provides clear evidence about why the 1D DM method is
difficult to be directly generalized to 2D studies, or why the 1D
DM method is much easier than that of 2D. What simply relates x
derivatives of Ez component is the factor in terms of wave num-
bers: R � 
x,1

2 /
x,2
2 , which, however, is generally unknown. As a

consequence, the jump conditions containing �1 and �2 inevitably
involve y derivatives and cross derivatives, so that the 2D DM
modeling is extremely complicated. In contrast, the factor R hap-

pens to be equal to the known factor of material property �1/�2 in
1D cases, so that 1D DM modeling can be easily carried out.

This investigation motivates us to design a new tensor-product
derivative-matching (TPDM) method for simple 2D cases. The
basic consideration is to numerically estimate the factor R for 2D
problems. We denote such an estimate as R� . Whenever R� is
computed, the well-developed 1D IDM method [24] can be di-
rectly employed for 2D applications. Note that the stability con-
straint of the TPDM is thus the same as that of the 1D IDM
method, which was carefully studied in [24]. In order to estimate
R, we must assume that the initial solutions of the time-domain
problem under consideration are analytically available. In each
homogeneous region, we consider a highly accurate approximation
of �2Ez/� x2 at one grid node. By dividing such an approximation
with the corresponding initial value of Ez at that node, we attain an
estimate of �
x,1

2 or �
x,2
2 . The estimate of R can thus be easily

generated.
An advantage of the TPDM is that it is very efficient for the

numerical simulation of long-time wave propagation, because of
its preprocessing nature. It is noted that although the TPDM is
formulated on a uniform grid, it actually works on more general
grid settings, that is, either staggered or nonstaggered grid systems,
as well as the domain-decomposition setting. In general, it can be
employed together with any time-domain solver. Moreover, a
nonuniform grid can be applied near the interface to enhance
adaptivity with appropriate Lagrange coefficients of differentia-
tion.

It is noted that because an accurate estimate of R� is generally
impossible for many CEM problems, such as time-domain wave-
scattering problems [15, 16] and frequency-domain problems [17,
27], the proposed TPDM method cannot be applied to these
situations. Moreover, the relation becomes more complicated in
3D. In other words, it is not a generally applicable approach for
CEM. However, the TPDM method does provide accurate approx-
imations for initial guided-wave problems. In practice, it is also
found the accuracy of the TPDM method crucially depends on the
accuracy in the estimation of R� . Even though the TPDM method
can only be applied to a limited class of CEM applications, once
it is applicable, it can be much more effective than our previous

TABLE 2 L2 Errors of the FDTD Methods with the TPDM at Time t � 0.5 with �t � 1.0 � 10�4 at High-Frequency Parameter
Setting (My � 8)

Mx (Nx, Ny)

Ez Hx Hy

Error Rate Error Rate Error Rate

1 (26, 21) 3.69(�1) 4.26(�1) 7.33(�1)
(51, 41) 1.90(�1) 0.953 1.30(�1) 1.709 2.81(�1) 1.379

(101, 81) 6.42(�2) 1.569 2.54(�2) 2.355 5.57(�2) 2.339

2 (26, 21) 1.98(�1) 2.53(�1) 5.35(�1)
(51, 41) 3.46(�2) 2.517 1.34(�2) 4.234 2.94(�2) 4.181

(101, 81) 2.38(�3) 3.861 8.36(�4) 4.006 1.82(�3) 4.014

4 (26, 21) 1.34(�1) 8.21(�2) 1.80(�1)
(51, 41) 1.40(�3) 6.583 5.15(�4) 7.317 1.11(�3) 7.340

(101, 81) 6.68(�6) 7.710 2.43(�6) 7.728 5.25(�6) 7.723

6 (26, 21) 7.41(�2) 3.62(�2) 7.83(�2)
(51, 41) 7.75(�5) 9.900 2.85(�5) 10.307 6.14(�5) 10.315

(101, 81) 2.70(�8) 11.482 9.88(�9) 11.497 2.13(�8) 11.492

8 (26, 21) 4.19(�2) 1.87(�2) 4.01(�2)
(51, 41) 4.95(�6) 13.047 1.81(�6) 13.333 3.92(�6) 13.318

(101, 81) 1.36(�10) 15.147 4.87(�11) 15.185 1.05(�10) 15.176
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Q4DM and HDM methods, in terms of accuracy, simplicity, and
efficiency.

3. NUMERICAL STUDIES

We numerically investigate the performance and analyze the lim-
itation of the proposed FDTD TPDM scheme for 2D electromag-
netic applications in this section. The two previous high-order
schemes, the Q4DM and 2D HDM methods, are also employed for
a comparison. We use the 4th-order Runge–Kutta scheme for time
integration. Standard staggered grids are used in this work. Bound-
ary extension techniques [15–17, 27] are used to impose the PEC
conditions.

The first problem being considered has a PEC-bounded domain
� � {( x, y)�0  x  5/4, 0  y  1}. The permittivity is
defined by

� � ��2, if 0  x 
1

2
, 0  y  1,

�1, if
1

2
 x 

5

4
, 0  y  1.

The exact solution for time-varying electromagnetic fields is given
by [21]:

Ez � � sin�a1x�sin�by�sin�
t�, 0  x 
1

2
0  y  1,

cos�a2x�sin�by�sin�
t�,
1

2
 x 

5

4
0  y  1.

Hy � ��
a1



cos�a1x�sin�by�cos�
t�, 0  x 

1

2
0  y  1,

a2



sin�a2x�sin�by�cos�
t�,

1

2
 x 

5

4
0  y  1.

Hx � �
b



sin�a1x�cos�by�cos�
t�, 0  x 

1

2
0  y  1,

b



cos�a2x�cos�by�cos�
t�,

1

2
 x 

5

4
0  y  1,

where a1
2 � b2 � �2
2, a2

2 � b2 � �1
2, sin(a1/ 2) �
cos(a2/ 2), and cos(5a2/4) � 0. As in [21], the set of parameters
to be tested is chosen as �1 � 1, �2 � 2, a1 � 3�, a2 � 2�,
b � �, and 
 � 5 �.

We evaluate the performance of the TPDM method. For the
chosen set of problem parameters, we have R � 
x,1

2 /
x,2
2 �

a1
2/a2

2 � 9/4. By using the standard FD approximations to the
2nd-order derivative with Mx � 16 in each homogeneous region,
a highly accurate estimate of R can be made. The numerical error
in the estimation is found to be as small as �R � R� � � 2.22 �
10�14 by using a coarse grid with �x � 0.025. With such an
accurate estimation, satisfactory results are obtained by using the
TPDM method (see Table 1 and Fig. 2). It is clear from Table 1

that theoretical order of accuracy is numerically confirmed for
Mx � 1, 2, 4, and 6, until the machine limit is reached. For Mx �
8, its convergence rate is obviously restricted by the double
precision. Therefore, when it is applicable, the TPDM method can
achieve higher order of accuracy than our previous 2D HDM
method, as shown in Figure 2. Furthermore, it is noted that the
TPDM method also performs very well if one’s computational
nodes are not on the interface x � �. Results of equal quality are
obtained, although they are not reported.

As the convergence in Table 1 is limited by the machine
precision, we next consider a set of parameters which are more
difficult to compute due to the presence of high-frequency waves.
We choose �1 � 1, �2 � 261/136, a1 � 15�, a2 � 10�, b �
6�, and 
 � 234 �. The numerical results for this set of
parameters are listed in Table 2. Note that in this case we also have
R � a1

2/a2
2 � 9/4. As expected, our numerical rate of convergence

is close to the designed one, namely, 16.
Next, we explore the limitation of the TPDM method. To this

end, the influence of the accuracy in estimating R� for the final
numerical results of the TPDM method is examined. To demon-
strate this influence, we artificially enlarge the estimation error
�R � R� � for the first set of problem parameters. Four different R�

values with different errors are tested (see Table 3). It is found
from Table 3 that the accuracy of the entire scheme proportion-
ately deteriorates as the estimation error increases. In other words,
if an accurate estimate R� is unavailable, the performance of the
TPDM method is quite poor. Therefore, we point out that the
TPDM method has a limitation for general electromagnetic appli-
cations.

It is important to verify that the proposed method works for
different test problems. For this purpose, we further examine the
numerical performance of the TPDM scheme by considering an-
other 2D CEM problem. In this problem, a lossless dielectric
region with a relative permittivity of �2 is enclosed by air in the x
direction, and the media are nonmagnetic and homogeneous along
the y direction. The computational domain � � {( x, y)� �x�  1,
�y�  1} is enveloped by PEC walls. The permittivity is given as

� � ��2, if
1

2
 �x�  1, �y�  1,

�1, if �x� 
1

2
, �y�  1,

TABLE 3 L2 Errors of the FDTD Method with the TPDM at
Time t � 1 with �t � 2.5 � 10�4 (Mx � My � 8, Nx � 51, and
Ny � 41)

�R � R� � Ez Hx Hy

1.00(�14) 8.80(�15) 4.01(�15) 8.92(�15)
1.00(�10) 1.11(�12) 4.66(�13) 1.02(�12)
1.00(�6) 1.11(�8) 4.63(�9) 1.01(�8)
1.00(�2) 1.10(�4) 4.62(�5) 1.01(�4)

Figure 3 Plots of electromagnetic fields along the line y � 1/3 at time
t � 0.75
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where �1 � 1 and �1 � 2.25. This problem admits an exact
solution for the following time-varying electromagnetic fields:

Ez � �
sin	
2

2 
sin�
1�x 	 1��sin�
yy�cos�
t�, �1  x � �
1

2
�y�  1

�sin	
1

2 
sin�
2x�sin�
yy�cos�
t�, �
1

2
 x 

1

2
�y�  1

sin	
2

2 
sin�
1�x � 1��sin�
yy�cos�
t�,
1

2
� x  1 �y�  1

,
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2

2 
sin�
1�x 	 1��cos�
yy�sin�
t�, �1  x � �
1

2
�y�  1


y



sin	
1

2 
sin�
2x�cos�
yy�sin�
t�, �
1

2
 x 

1

2
�y�  1

�

y



sin	
2

2 
sin�
1�x � 1��cos�
yy�sin�
t�,
1

2
� x  1 �y�  1

,

Hy � �

1



sin	
2

2 
cos�
1�x 	 1��sin�
yy�sin�
t�, �1  x � �
1

2
�y�  1

�

2



sin	
1

2 
cos�
2x�sin�
yy�sin�
t�, �
1

2
 x 

1

2
�y�  1


1



sin	
2

2 
cos�
1�x � 1��sin�
yy�sin�
t�,
1

2
� x  1 �y�  1

,

where 
1
2 � 
y

2 � �1
2 and 
2
2 � 
y

2 � �2
2. Here, the value
of 
 can be determined according to the relation

��2

2 � 
y

2 tan	��1

2 � 
y

2

2 

� ��1


2 � 
y
2 tan	�

��2

2 � 
y

2

2 
.

We choose 
y � 2� to satisfy the PEC conditions on y � �1.
Correspondingly, 
 � 9.07716175885174. The analytical solution
is depicted in Figure 3.

We are particularly interested in a comparison with our
previous two high-order schemes, the Q4DM and HDM. Nu-
merical results of the three schemes for this test case are listed

in Table 4. The Q4DM scheme produces essentially the de-
signed 4th order of accuracy. The HDM scheme with both Mx �
6 and Mx � 8 yields almost the same accuracy and convergence
rate, showing the limitation of its iterative procedure. The
highest order of accuracy of the HDM method is about 12th

order, as shown in Table 4. For the TPDM method, the designed
convergence order is reached numerically for Mx � 6, while the
numerical rate of Mx � 8 is affected by the limit of double
precision. As can be seen from Table 4, the TPDM method
is clearly the most accurate scheme among the three tested
methods.

The CPU time of three methods is also given in Table 4. The
CPU time of the Q4DM method is the smallest among three
methods. However, if the same accuracy level is required to be
achieved for three methods, the TPDM is the most cost-efficient

TABLE 4 L2 Errors of the FDTD Method at Time t � 1 with �t � 2.0 � 10�4 for All Three DM Schemes (My � 8 and Mx � m)

Scheme Mx l (Nx, Ny)

Ez Hx Hy

CPUError Rate Error Rate Error Rate

Q4DM 2 — (21,21) 1.15(�4) 1.12(�4) 1.86(�4) 6.86
(41,41) 7.53(�6) 3.932 7.34(�6) 3.937 1.18(�5) 3.973 23.16

HDM 6 8 (21,21) 1.83(�6) 9.92(�7) 1.50(�6) 11.28
(41,41) 5.50(�10) 11.697 2.48(�10) 11.967 4.00(�10) 11.868 34.73

8 8 (21,21) 1.84(�6) 9.98(�7) 1.51(�6) 15.05
(41,41) 5.50(�10) 11.706 2.48(�10) 11.976 4.00(�10) 11.880 41.56

TPDM 6 6 (21,21) 1.70(�9) 1.47(�9) 2.49(�9) 9.90
(41,41) 4.73(�13) 11.812 4.15(�13) 11.794 6.99(�13) 11.798 30.77

8 8 (21,21) 1.43(�11) 2.36(�11) 3.41(�11) 14.32
(41,41) 6.90(�15) 11.013 6.99(�15) 11.719 9.67(�15) 11.784 39.84

CPU time is reported in seconds. Note that the definition of l in the TPDM method follows from the 1D HDM method, thus it differs from that of the 2D
HDM method.
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method, as it can be about 2000 times more efficient than the
Q4DM scheme.

4. CONCLUSION

This paper has proposed a tensor-product derivative matching
(TPDM) scheme to extend the 2D finite-difference time-domain
(FDTD) method to a high order of accuracy with the presence of
material interface. The proposed method makes use of a systematic
procedure, that is, implicit derivative matching [24] to construct
numerical schemes that greatly exceed the convergence rate of the
previous 4th-order methods [4, 20–23]. The proposed scheme is
designed to overcome certain drawback of our previous two high-
order methods, quasi-4th-order derivative matching (Q4DM) and
2D hierarchical derivative matching (HDM) [24], whose order of
accuracy is limited by its iterative nature. Moreover, the 2D HDM
scheme requires the interface to be on the grid points, which limits
its application to grid systems more complex than the body-fitted
ones. Similar to our previous high-order schemes, the proposed
TPDM approach utilizes fictitious points, a technique used by
Driscoll and Fornberg in their block pseudospectral methods [25,
26] to locally modify the differential stencils near the material
interfaces based on a structured grid. Moreover, we locally modify
the differential stencils at the beginning, the so-called preprocess-
ing stage, which is attractive for long time integration. Two nu-
merical examples are chosen to test the performance of the pro-
posed TPDM scheme and to compare it with our previous Q4DM
and 2D HDM methods. The numerical results indicate that the new
method could reach a nearly 16th order of accuracy for wave
propagation with material interfaces. When applicable, the pro-
posed TPDM can be about 2000 times more efficient than our
previous Q4DM approach.
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ABSTRACT: A two-element hexagonal-shape stacked-patch antenna ar-
ray fed by an L-shaped probe is designed and measured. Experimental re-
sults show that the array achieves an impedance bandwidth of 34%
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