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High Order Vectorial Analysis of Waveguides
With Curved Dielectric Interfaces

Shan Zhao

Abstract—This letter introduces a novel full vectorial higher
order finite difference method for the modal analysis of optical
waveguides with smoothly curved dielectric interfaces. Based on
a simple Cartesian grid, a new matched interface and boundary
formulation is derived to enforce the interface conditions so that
the staircasing error can be eliminated. Benchmark problems
are employed to validate the proposed method. A fourth order
convergence is numerically confirmed irrespective of the presence
of the step-index interfaces.

Index Terms—Eigenvalues and eigenfunctions, finite difference
methods, nonhomogeneous media, waveguide theory.

I. INTRODUCTION

I N recent years, there has been an increased interest in the
design of optoelectronic devices with non-rectangular cross

sections to address various application needs. To model arbi-
trarily curved dielectric interfaces with more accuracy, one pop-
ular way in the literature is fitting the grid to the boundaries.
For example, a nonuniform triangular mesh has been adopted
in a full vectorial finite difference (FD) method for this pur-
pose [1], while some advanced finite element methods [2], [3]
employ curvilinear/isoparametric elements to achieve a better
fit. Within the boundary integral framework, curved interfaces
are suggested to be represented via a combination of circular
and elliptical segments [4]. The method of lines analysis has
been extended to deal with arbitrarily curved interfaces in [5].
By only discretizing on the interfaces, the boundary element
method (BEM) is naturally suited for curved interface problems.
A full vectorial BEM has been introduced to produce highly ac-
curate results [6]. In general, the success of the aforementioned
methods essentially lies in the use of body-fitted grids so that
the staircasing error can be avoided.

It is well known that across dielectric interfaces, field compo-
nents are nonsmooth or even discontinuous [7]. Thus, to achieve
a higher order accuracy, special interface treatments in which
the interface conditions are properly imposed in the discretiza-
tion, are indispensable. For rectangular waveguides, such inter-
face treatments have achieved a great success, giving rise to up
to 12th order FD interface schemes [8]–[11]. Second order in-
terface schemes have also been constructed for waveguides with
curved interfaces [12], [13]. Based on a simple Cartesian grid,
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Fig. 1. Illustration of the MIB grid partition. Filled circles: Cartesian nodes;
Open circles: fictitious nodes; Squares: auxiliary nodes.

the enforcement of interface conditions in some sense fits the
differencing weights to the dielectric interfaces so that the stair-
casing error is eliminated.

The objective of this Letter is to introduce a fourth order
full-vectorial matched interface and boundary (MIB) method for
optical waveguides with smoothly curved interfaces. The MIB
was first proposed for solving Maxwell’s equations with straight
interfaces [7], and it has been generalized to treat curved in-
terfaces for solving the scalar Poisson equation [14]. The MIB
has also been reformulated to impose complex boundary condi-
tions for general boundary value problems and initial-boundary
value problems in [15]. Recently, a full-vectorial MIB method
has been constructed for solving rectangular optical waveguides
with straight interfaces [11].

II. FORMULATION AND DISCRETIZATION

Consider a step-index optical waveguide with smoothly
curved interfaces. A full vectorial formulation in terms of
transverse magnetic field components and will be
constructed based on a simple Cartesian grid. A typical local
configuration is shown in Fig. 1. Except on interface , both

and satisfy the scalar Helmholtz equation

(1)

where or , is the propagation constant, is
the relative permittivity coefficient, is the free space
wavenumber with being the free space wavelength.

Away from , the standard fourth order finite difference (FD)
discretization of (1) is carried out, while the FD weights of nodes
in the vicinity of the interface shall be modified. A universal
rule here is that to approximate function or its derivatives on
one side of interface, one never directly refers to function values
from the other side. Instead, in the MIB scheme [7], [11], [14],
[15], fictitious values from the other side of the interface will
be used. For example, referring to Fig. 1, we denote and
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, respectively, to be function and fictitious value at the node
. The fourth order FD approximation near the interface

will be modified to be

(2)

This calls for accurate generation of four layers of fictitious
values (marked with open circles in Fig. 1) surrounding ,
two inside and two outside.

Consider the MIB interface treatment along direction, see
Fig. 1. The MIB scheme for direction can be similarly for-
mulated. Eight fictitious values of and on four ficti-
tious points , , , and need
to be determined. This will be achieved via iteratively solving
jump conditions at the interface point . These physical
jump conditions are defined on a local cylindrical coordinate
system (see Fig. 1). Let the curvature of the interface
at be or the effective radius be . We denote
a function jump at point to be

. We have totally six jump conditions available [12]

(3)

(4)

We note that the previously developed MIB method [11] is not
able to handle the current situation because the jump conditions
are in terms of local field components .

A new full vectorial MIB method will be constructed, which
involves both a global Cartesian coordinate and local coordi-
nates for each interface matching. In particular, the Helmholtz
(1) will be solved throughout for , while jump con-
ditions (3) and (4) will be discretized in terms of . A
local coordinate transformation will be employed to convert be-
tween them. Referring to Fig. 1, we denote the angle between

direction and radial direction at point , i.e., , to be .
Then the forward and backward transforms are given as

(5)

(6)

To avoid unnecessary interpolations, jump conditions (3) and
(4) will be discretized on the global Cartesian nodes as shown
in Fig. 1. We thus need to rewrite jump conditions (3) and (4)
into Cartesian directions . Consider first. Conditions

and give rise to
and . This means that the MIB treatment of
can be carried out in a dimension-by-dimension manner.

For the interface topology shown in Fig. 1, MIB interface
matching of should naturally be conducted along direc-
tion. We will determine four fictitious nodes as shown in Fig. 1
by discretizing the following two jump conditions:

(7)

To this end, an iterative procedure is employed in the
MIB scheme [7], [11], [14], [15]. At the first step, we

determine two fictitious values and by dis-
cretizing (7) based on two grid stencils, i.e.,

and
. Denote the

finite difference (FD) weight vector of these two stencils dif-
ferentiating at to be, respectively, and . Here the
subscript represents interpolation and the first order
derivative approximation . Then, (7) becomes

(8)

By solving (8), one attains and . At the next
step, we redefine each stencil by introducing one more ficti-
tious point and

. Consequently,
and will also be re-calculated. Then, two more

fictitious values and can be solved from (8),
since and are now known. This gives four layers
of fictitious values.

We next discuss the MIB treatment for . We first rewrite
jump conditions (4) into one that involves and derivatives,

(9)
Two Cartesian terms in (9), i.e., and
can be discretized as in (8). For example, by similarly defining

and , we have
. The other two terms of (9) involve deriva-

tives. Moreover, these derivatives are continuous across the
interface, according to the jump conditions
and . Thus, we have

and
. In other words,

these two terms need not be discretized by means of two
stencils from both sides of the interface. Instead, they will be
discretized along the interface. Denote some auxiliary points to
be intersection points of the interface with grid lines, i.e.,

, , , , and
in Fig. 1. A five points stencil FD weight vector will be
used to discretize these derivatives. Let the corresponding
vectors of auxiliary values to be and . The first order
jump condition (9) will be discretized as

(10)

The zeroth order jump condition will be discretized
as in (8). Then a two step procedure as in the case will be
employed to estimate four fictitious values.

The MIB scheme discussed above will essentially represent
four layers of and in terms of and values on
a set of 15 nodes (10 along line and 5 auxiliary points). Via
the coordinate transformations (5) and (6), each fictitious value
of or is also a linear combination of 30 function values
of and on 15 nodes. Finally, to attain a full Cartesian
grid approach, each auxiliary point will be interpolated along
line by using five nearest nodes exclusively inside the interface.
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Fig. 2. Numerical convergence tests of the MIB scheme.

Therefore, in the final MIB discretization, each fictitious value
of or will depend on totally 60 function values on 30
Cartesian nodes.

III. NUMERICAL RESULTS

To validate the proposed full vectorial MIB approach, we
consider three benchmark tests of step-index fibers with dif-
ferent refractive index and wavelength [1], [6]. The core ra-
dius of the fiber is fixed to be , while other three parame-
ters are given as, respectively, (1.45,1.44,1.55),
(1.5,1.0,6.2), and (3.5,1.0,6.2) in case 1, 2, and 3. We will cal-
culate the fundamental mode and compare with the an-
alytical solutions [1], [6]. The analytical effective propagation
constant is given to be 1.44607 67348 5869, 1.40948
36877 8245, and 3.45285 49556 2367, respectively, for case 1,
2, and 3.

For each case, a large enough square computational domain
with Dirichlet zero boundary conditions will

be used. A uniform mesh of size , i.e., , is
employed in all cases. In [1], by exploiting the symmetry, only
a one-quarter of region is discretized. In the present study, in
order to test the performance of the proposed MIB method, it
is desired that the interface intersection and orientation with re-
spect to the Cartesian grid could be arbitrary. Thus, the entire
domain will be discretized and the domain dimension will be
chosen as a non-integer number. In particular, is selected to
be for case 1 and 2, and for case 3.

The absolute errors of the MIB scheme are depicted as dashed
lines in Fig. 2. To analyze the numerical convergence rate of
the MIB scheme, a linear fitting by means of the least squares is
conducted in the log-log scale [11]. The resulting solid conver-
gence line and the corresponding slope are also shown in Fig. 2.
For case 1, 2, and 3, the numerical order is calculated to be
4.69, 5.90, and 4.10. This verifies the fourth order convergence
of the MIB scheme and the present results are significantly more
accurate than those reported in [1] and [6]. Among three cases,
the best accuracy is achieved in the case 1, because a weakly
guided structure is solved there. The over-performance rate 5.90
of the case 2 should be due to the impaired MIB accuracies for

. Such an accuracy reduction on coarse grids might be
due to the fact that there are limited nodes inside the fiber, while
this is not an issue for the case 3 thanks to a smaller .

We note that the CPU time consumed for solving each ficti-
tious value is independent of . The computational overhead

of the MIB treatments essentially scales as , since the
number of total irregular points is one dimension lower than the
number of total grid points. In the present experiments, the MIB
preprocessing usually takes less than 1% CPU time.

IV. CONCLUSION

In summary, we have introduced a novel full vectorial MIB
method for solving optical waveguides with smoothly curved
interfaces. Compared with the previously developed MIB
method for rectangular waveguides [11], the current approach
overcomes a major difficulty in relating a global Cartesian
grid with different local cylindrical coordinates at different
interface points. A fourth order convergences is reported for
the first time in the literature for the benchmark problems of
step-index fibers. The testing of the proposed MIB method for
more complex interfaces is currently under investigation. We
finally note that the proposed method is designed for smoothly
curved interfaces, i.e., continuous interfaces. If the interface
is , certain corner singularity problems may occur so that
the fourth order convergence might not be guaranteed [9]–[11].
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