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Abstract

This paper explores the utility of a discrete singular convolution (DSC) algorithm for

solving the Black–Scholes equation. Both European and American style options, which

include all nontrivial plain option pricing problems, are considered to test the accuracy

and to examine the efficiency of the present algorithm. Adaptive meshes are constructed

to enhance the performance of the DSC algorithm. All the present results are validated

either by the analytical solution or by the standard binomial tree method. Extensive

comparisons are carried out with two standard finite difference schemes and two bino-

mial models of high speed convergence. Numerical experiments reveal that the present

approach is accurate, efficient and reliable for financial derivative valuations.
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Nomenclature

B frequency bound

c DSC parameter, b/D
D dividend amount

D1, D2, D3 dividend amounts in multiple discrete dividends paying case

f L2 function

F generic function

Fa an approximation to F

GDSC DSC approximation matrix

H number of the underlying asset

K distribution
Ka distribution approximation sequence

l approximation parameter of distribution sequence (integer)

L linear differential operator

L1 maximum absolute error measure

L2 root mean squared error measure

M discretization parameter of Dirichlet type kernels

N total grid number

Nbt total number of time steps in the binomial tree method
N( Æ ) standard normal distribution function

N2( Æ , Æ ; Æ ) standard bivariate normal distribution function
q continuous dividend payout rate

r riskless interest rate

r1, r2, r3, r4 temporary variables used in the Runge–Kutta scheme
Rb( Æ ) regularizer

S stock price, asset price

ST stock price at date T
~S risky component of an asset price

½~S�� asset node on the coarse grid, which has the smallest distance

departed from the critical price ~S
�
among all coarse grid nodes.

t time

T time of expiration

v option value

vm the spatial discretization of v with respect to the x-coordinate
�v option value directly calculated from the last time step
v (v1,v2, . . . ,vm ,. . . ,vN)
W half bandwidth

xk discrete sampling points around the point x

X strike price

Z random variable following the standard Wiener process
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Greek

a approximation parameter of distribution sequence

b width of the Gaussian envelope

d delta distribution
da,b;k, dp

D;b;k convolution kernels

D grid spacing, incremental value
�D (3/2)D
g element of the space of test functions

l expected rate of return

o partial

P portfolio

q correlation coefficients
r volatility

s time to expiration

sd single ex-dividend date

s1, s2, s3 ex-dividend dates in a multiple discrete dividends paying case
s�1, s

�
2, s

�
3 critical dates of the optimal exercise boundary in a multiple dis-

crete dividends paying case

h desired significant figure index

subscripts

i, j, k iteration labels

min, max the left and right boundaries of the asset price coordinate

s, e the starting and ending dates of a finer grid

superscripts

d index of the finer grid used in the valuation of American calls on

discrete dividend paying assets
l the level index of a finer grid

(n) nth derivative

+, � instants immediately after and before certain date

* critical asset price

^ numerical estimated value
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1. Introduction

Option pricing is often modeled by stochastic processes, from which partial

differential equations (PDEs), such as the Black–Scholes equation, can be de-

rived under appropriate assumptions [5,31]. It is well known that many impor-

tant derivatives lack a closed-form analytical solution and their estimation has
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to be performed by numerical procedures. For this purpose, three major

numerical approaches have been developed in the finance literature: binomial

tree model [15], finite difference (FD) method [7,8,34], and Monte Carlo simu-

lation [6]. Apart from numerical methods, a number of analytical approxima-

tion methods have been also suggested in the literature, especially for pricing

American options, such as the quadratic approximation approach [30,4], com-
pound option approximation [18,11], the method of interpolation between

bounds [24,9], and the analytic method of lines [12]. Generally speaking, both

the binomial tree method and the Monte Carlo simulation approximate the

underlying stochastic processes directly, while the FD scheme and analytic

approximation are used to solve the Black–Scholes equation with appropriate

boundary conditions that characterize various option pricing problems. Some

detailed review and/or comparison of the alternative option valuation tech-

niques are available in [19,9].
Commonly used numerical methods, such as the FD scheme and the bino-

mial tree method, are quite simple, flexible, and convergent (as was proved in

[22,1]) for financial derivatives. However, the speed of convergence of these

methods is usually very slow. Recently, two explicit FD schemes, a fully expli-

cit FD scheme [7,34] and a widely used mixed FD scheme [8,21], are carefully

examined by Buetow and Sochacki [10] for their use in pricing derivative secu-

rities. They found that for European option valuation, the relative error be-

tween mixed and explicit FD schemes becomes financially significant. In this
valuation, the approximation errors of two FD schemes could be actually much

larger than (sometimes up to 39 times) the relative error, and such mispricing

may become worse in some complicated cases. Therefore, under certain

requirements, it will be very expensive to achieve acceptable accuracy in option

valuations by using lower-order approximation schemes.

Much effort has been made to improve the binomial model. One aspect con-

cerns the speed of convergence of lattice approach [23,38]. Leisen and Reimer

[28] measured the speed of convergence by using the concept of order of con-
vergence, and showed that the lattice approaches given in [23] and in [38] have

the same order of convergence (order one), as the original binomial model [15]

for the valuation of European options. Recently, two extended lattice ap-

proaches have been constructed by Leisen and Reimer [28] and Leisen [26]

which can numerically achieve second order of convergence in European

option valuation, and first order in American put valuation with small initial

error. More recently, by treating the difference between two trading dates as

being random, a delicately designed random-time binomial model was con-
structed [27], which can speed the convergence up to second order in American

put valuation. The other aspect seeks to improve the accuracy of the binomial

model. Figlewski and Gao [16] introduced an adaptive mesh model to the con-

ventional lattice approaches. Their idea is to utilize a higher-resolution lattice

in the critical region where discretization evokes severe approximation errors,
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while keeping the use of a coarser gird for the rest of the mesh. The accuracy

can be improved significantly with a relatively small additional computational

effort.

The utility of adaptive mesh can be justified from both financial and numer-

ical considerations. For a plain call or put, very rapid changes in the option

price occur around the strike price at expiration. Gamma value of an at-the-
money option will increase without limit as the time to maturity tends to zero

so that the value of a option holder�s position shortly before expiration is
highly sensitive to jumps in the stock price. Numerically, it is the rapid changes

in this critical region that introduce the most serious discretization error and

the final maximum numerical error always occurs around the at-the-money op-

tion. In practice, such an option is of great interest to both academicians and

practitioners compared with other deep in-the-money and out-of-the-money

options. Thus, the problem of accurate resolution of the high gradient region
is important not only from the consideration of truncation error but also from

the viewpoint of finance.

Much effort has also been made to improve the FD schemes. Most of them

are mainly focus on improving the accuracy of the FD schemes. For example,

by using a coordinate transformation which yields high resolution nodes

around a strike price, Clarke and Parrott [13] found that the accuracy and per-

formance of their implicit FD scheme could be improved considerably. Obvi-

ously, their technique is essentially similar to the adaptive mesh method used
for the binomial model. The other interesting way to improve the FD schemes

is utilizing higher order numerical PDE schemes. For the lower-order FD

scheme used in the finance literature, the error of the scheme may be substan-

tial, limiting the performance of adaptive mesh techniques. However, higher-

order FD schemes are usually cumbersome to implement in association with

special boundary conditions, which often occur in option pricing problems.

Recently, the discrete singular convolution (DSC) algorithm [42] has been

developed as a wavelet-collocation approach [43] for solving various challeng-
ing computational problems in fluid dynamics simulation [40], structural anal-

ysis [46,47], computational electromagnetics [2,37,3], and shock capturing

[45,48]. The mathematical foundation of the algorithm is the theory of distri-

butions and the theory of wavelets [44]. It has been shown that in the frame-

work of the DSC algorithm, the wavelet collocation is equivalent to a

wavelet Galerkin [43]. By appropriately selecting parameters of a DSC kernel,

the DSC approach exhibits spectral accuracy for integration [32,2,3] and shows

great flexibility in handling complex geometries and boundary conditions
[40,47,37,48].

The objective of the present work is twofold. First, we explore the use of the

DSC algorithm as an alternative approach for solving the Black–Scholes equa-

tion directly. The present DSC approach provides a simple, systematic algo-

rithm for the generation of FD schemes of an arbitrary order. Second, we
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study the efficiency enhancement of both the conventional FD scheme and the

DSC approach under adaptive meshes.

This paper is organized as follows. Section 2 is devoted to a brief review of

the option pricing model and the DSC algorithm. The implementation of the

DSC algorithm for the option pricing model is discussed. Section 3 presents

the applications of the DSC approach to the solution of the Black–Scholes
equation. We use both European and American options to illustrate the pre-

sent approach. The benchmark problem, European option pricing, is used

since it enable us to assess the accuracy of the numerical approximation against

the exact Black–Scholes value. The American options which are the most pop-

ularly traded options on exchanges are also treated in this study. Different div-

idend paying conditions, which cover all nontrivial plain options, are tested.

Two high accuracy lattice approaches and two standard FD methods are

implemented for a comparison. Both the analytical solution and the conven-
tional binomial model are invoked for a quantitative validation of the present

approach. Conclusions are given in Section 4. Some algebraic details are pre-

sented in Appendices.
2. Theory and algorithms

In this section, we first describe a mathematical model of option pricing. The
DSC algorithm is introduced for solving the Black–Scholes equation. Some

computational aspects, including the finite difference schemes, are discussed.

2.1. The Black–Scholes equation

The starting point of the mathematical theory of option pricing is the ran-

dom walk assumption for the asset price, i.e. the evolution of the asset price

S at time t follows the geometric Brownian motion

dS
S

¼ ldt þ rdZ; ð1Þ

where l is the expected rate of return and r is the volatility, and dZ is the

standard Wiener process with a zero mean and variance dt. By adopting the
common hedging procedure, a portfolio P which consists of one option v

and a number �H of the underlying asset is formed

P ¼ v� HS: ð2Þ
By setting H = ov/oS, it can be shown that the portfolio P becomes a riskless

hedge. In an efficient market with no riskless arbitrage opportunity, any port-

folio with a zero market risk must have an expected rate of return which equals
the riskless interest rate r. Therefore we have dP = rPdt. In a complete form,
we arrive at the Black–Scholes equation [5]
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ov
ot

þ r2

2
S2

o2v

oS2
þ rS

ov
oS

� rv ¼ 0; 0 < S < 1; t > 0: ð3Þ

The general form of the Black–Scholes equation which is used in the present
numerical study is given by:

ov
os

¼ r2

2
S2

o
2v

oS2
þ ðr � qÞS ov

oS
� rv; 0 < S < 1; s > 0; ð4Þ

where q is the continuous dividend payout rate, s is the time to expiration
(s = T � t), and T is the time of expiration. Eq. (4) along with various initial

and boundary conditions (expiration, exercise, and payout conditions) is used
to characterize different options.

2.2. Discrete singular convolution

The underlying mathematical structure of the DSC approach is the theory of

distributions. Singular convolutions are essential to many science and engineer-

ing problems, such as electromagnetics, Hilbert transform, Abel transform and

Radon transform. The DSC algorithm is a general approach for numerically
solving singular convolution problems. By an appropriate construction of sin-

gular convolution kernels, the DSC can be an extremely efficient, accurate and

reliable algorithm for practical applications [42].

The simplest way to introduce the theory of singular convolution is to work

in the context of distributions. The latter has important ramifications in math-

ematical analysis [44]. Let K be a distribution and g be an element of the space
of test functions. A singular convolution is defined as:

F ðtÞ ¼
Z 1

�1
Kðt � xÞgðxÞdx: ð5Þ

Here K(t � x) is a singular kernel. Depending on the form of the kernel K, the

singular convolution is the central issue for a wide range of science and engi-

neering problems. For example, singular kernels of the Hilbert type have a gen-

eral form of

KðxÞ ¼ 1

xn
ðn > 0Þ: ð6Þ

Here, kernels K(x) = 1/xa (0 < a < 1) define the Abel transform which is closely

connected with a generalization of the tautochrone problem. Kernel K(x) = 1/x

is commonly encountered in electrodynamics, theory of linear response, signal
processing, theory of analytic functions and the Hilbert transform; K(x) = 1/x2

is the kernel popularly used in tomography. The other interesting example is

the singular kernels of the delta type

KðxÞ ¼ dðnÞðxÞ ðn ¼ 0; 1; 2; . . .Þ: ð7Þ
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Here, kernel K(x) = d(x) is of particular importance for the interpolation of
surfaces and curves (including atomic, molecular and biological potential en-

ergy surfaces, and for numerous image processing and pattern recognition

problems) and K(x) = d(n)(x), (n = 1,2,. . .) are essential for obtaining weak solu-
tions of partial differential equations. However, since these kernels are singular,

they cannot be directly digitized in numerical computation. Hence, the singular
convolution, (5), is of little numerical merit. To avoid the difficulty of using sin-

gular expressions directly in computation, sequences of approximations {Ka}

of the distribution K can be constructed:

lim
a!a0

KaðxÞ ! KðxÞ; ð8Þ

where a0 is a generalized limit. Obviously, in the case of K(x) = d(x), the se-
quence, Ka(x), is a delta sequence. It is noted that at the limit one retains the
delta distribution, which is a real constant in the frequency space and is the

so-called all pass filter. Computationally, the delta distribution is a universal

reproducing kernel which can be used as a starting point for the construction

of either band-limited reproducing kernels or approximate reproducing ker-

nels. Further more, with a sufficiently smooth approximation, it is useful to

consider a discrete singular convolution (DSC)

F aðtÞ ¼
X

k

Kaðt � xkÞf ðxkÞ; ð9Þ

where Fa(t) is an approximation to F(t) and {xk} is an appropriate set of

discrete points on which the discrete convolution (9) is well-defined. It is this

discrete expression that makes a computational realization possible. Note that

the original test function g(x) has been replaced by f(x). The mathematical

property or requirement of f(x) is determined by the approximate kernel Ka.

In general, the convolution is required to be Lebesgue integrable.

It is helpful to illustrate the algorithm by examples. A simple example is
Shannon�s kernel [36], ðsin axÞ=px, which is also known as Sinc function [29].
Shannon�s kernels are a delta sequence and thus provide an approximation
to the delta distribution or so-called Dirac delta function d

lim
a!1

sin ax
px

; gðxÞ
� �

¼ gð0Þ; ð10Þ

where h Æ , Æ i denotes the standard inner product. As another important exam-
ple, Lagrange kernel is of great interest, since the corresponding DSC approach

provides a simple, systematic algorithm for the generation of FD schemes of an

arbitrary order [43]:Y1
i¼�1;i6¼k

x� xi

xk � xi
; k 2 Z: ð11Þ
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Other important examples include the Dirichlet kernel

sin lþ 1
2

� �
x

� 	
2p sin 1

2
x

� 	 ; l ¼ 0; 1; 2; . . . ; ð12Þ

the modified Dirichlet kernel

sin lþ 1
2

� �
x

� 	
2p tan 1

2
x

� 	 ; l ¼ 0; 1; 2; . . . ; ð13Þ

and the de la Vallée Poussin kernel

1

p
cos½ax� � cos½2ax�

x2
: ð14Þ

For sequences of both the delta type and the Hilbert type, an interpolating (or

quasi-interpolating) algorithm sampling at Nyquist frequency, a = p/D, has
great advantage over a non-interpolating discretization. Therefore, Shannon�s
kernel is discretized as

sin ax
px

!
sin p

D ðx� xkÞ
p
D ðx� xkÞ

: ð15Þ

In fact, the interpolative (or quasi-interpolative) nature not only guarantees the

highest accuracy on the set of grid points, but provides the highest possible

computational efficiency of a grid as well. This is because the Nyquist interval

given by [�p/D,p/D] is the largest possible sampling interval that is free of alias
whenever the L2 function f(x) under study satisfies the Nyquist condition:

suppf̂ ðkÞ � � p
D
;
p
D

n o
: ð16Þ

This fact can be formally addressed by Shannon�s sampling theorem

f ðxÞ ¼
X1
k¼�1

f ðxkÞ
sin p

D ðx� xkÞ
p
D ðx� xkÞ

: ð17Þ

The significance of Shannon�s sampling theorem is that by a discrete, but infi-

nite set of sampling data, {f(xk)}, one can actually recover a band-limited L2

function on a real line. Such band-limited L2 functions are known as elements

of the Paley–Wiener reproducing kernel Hilbert space. The discrete Shannon�s
kernel, fsin p

D ðx� xkÞ= p
D ðx� xkÞgk2Z, are a complete set of sampling basis.

Shannon�s sampling theorem has great impact on information theory, signal

and image processing because the Fourier transform of Shannon�s kernel is
an ideal low-pass filter for signals band-limited to [�p/D,p/D].
The uniform, Nyquist rate, interpolating discretization is also used for the

Dirichlet kernel [42]:

sin lþ 1
2

� �
x

� 	
2p sin 1

2
x

� 	 !
sin p

D ðx� xkÞ
� 	

ð2M þ 1Þ sin p
D

x�xk
2Mþ1

h i : ð18Þ
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In comparison to Shannon�s kernel, the Dirichlet kernel has one more para-
meter M which can be optimized to achieve better results in computations.

Usually, we set a sufficiently largeM for various numerical applications. Obvi-

ously, the Dirichlet kernel converts to Shannon�s kernel at the limit ofM ! 1.
This uniform interpolating discretization will also be used for discretizing the

modified Dirichlet kernels

sin lþ 1
2

� �
x

� 	
2p tan 1

2
x

� 	 !
sin p

D ðx� xkÞ
� 	

ð2M þ 1Þ tan p
D

x�xk
2Mþ1

h i ð19Þ

and for the de la Vallée Poussin kernel

1

p
cos½ax� � cos½2ax�

x2
! 2

3

cos p
D
ðx� xkÞ

h i
� cos 2p

D
ðx� xkÞ

h i
p
D
ðx� xkÞ

h i2 ; ð20Þ

where D ¼ ð3=2ÞD. Since p/D is proportional to the highest frequency which

can be reached in the Fourier representation, the D should be very small for

a given problem involving highly oscillatory functions or very high frequency

components. In other words, a very high resolution mesh is expected for some

critical region where very rapid changes in the solution occur. It is also noted

that, if the discrete points fxig1i¼�1 in the Lagrange kernel are uniformly dis-

tributed grid points, the Lagrange kernel (11) is already in its form of a uniform

and interpolating discretization.
It is noted that the sequence of approximation can be improved by a func-

tion Rb(x) [41] that has the property

lim
b!1

RbðxÞ ¼ 1: ð21Þ

Rb(x) is called a regularizer when (21) is satisfied. The regularizer is designed to

increase the regularity of convolution kernels. For the delta sequence, it follows

from Eq. (8) thatZ
lim
a!a0

KaðxÞRbðxÞdx ¼ Rbð0Þ ¼ 1; ð22Þ

where Rb(0) = 1 is the special requirement for a delta regularizer. A typical
delta regularizer used in this work and elsewhere [41] is exp(�x2/2b2). Conse-
quently, Shannon�s kernel is regularized as

sin p
D ðx� xkÞ

p
D ðx� xkÞ

!
sin p

D ðx� xkÞ
p
D ðx� xkÞ

e�ððx�xkÞ2=2b2Þ: ð23Þ

Since exp(�x2/2b2) is a Schwartz class function, it makes the regularized kernel
applicable to tempered distributions. Numerically, the regularized expression

performs much better than Shannon�s kernel for solving PDEs [41].
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Usually, a symmetrically (or antisymmetrically) truncated DSC kernel is

used to approximate the nth order derivative of a function f(x) as follows

f ðnÞðxÞ �
XW
k¼�W

dðnÞ
a;b;kðxÞf ðxkÞ; n ¼ 0; 1; 2; . . . ; ð24Þ

where 2W + 1 is the computational bandwidth, or effective kernel support,

which is usually smaller than the whole computational domain. Here dðnÞ
a;b;kðxÞ

is the nth derivative of da,b;k(x), which is a collective symbol for any of the

right-hand side of Eqs. (15) (or (23)), (18)–(20) and the finite Lagrange kernel

LkðxÞ ¼
YW

i¼�W ;i6¼k

x� xi

xk � xi
: ð25Þ

It can be shown that the finite Lagrange kernel is also a delta kernel as the

max"ijxi+1 � xij ! 0 for a sufficiently large W [44].

A mathematical estimation of approximation errors for the regularized

Shannon�s kernel has recently been provided in [32]. In particular, it is proved
that the truncation error of the DSC algorithm by using the regularized Shan-

non�s kernel decays exponentially with respect to the increase in sampling
points. In other words, the DSC algorithm can also achieve spectral accuracy

of global methods. This theoretical estimation is in excellent agreement with
previous numerical tests [41,43,2,48,3].

2.3. Numerical implementation

In this subsection, we describe the implementation of the DSC algorithm for

the spatial and temporal discretizations of the Black–Scholes equation. Two

finite-difference based schemes are also presented for a comparison.

Without the loss of generality, we consider a generic linear PDE of the form

vt þLvþ F ðvÞ ¼ 0; ð26Þ
where F(v) is a source term andL is a linear differential operator. In the DSC

approach, it is convenient to discretize an operator on a grid of the coordinate

representation and to use the collocation approach for solving a PDE [43].

Therefore, the source term can be discretized by

½F ðvÞ�x¼xm
¼ F ðvmÞ; ð27Þ

where the (integer) subscript vm denotes the spatial discretization of v with re-

spect to the x-coordinate. In terms of the DSC approximation Eq. (24), the dif-

ferential operator can be represented by the convolution

½Lv�x¼xm
¼
X

n

dnðxÞ
o
nv

oxn

� �
x¼xm

¼
X

n

dnðxmÞ
XmþW

k¼m�W

dðnÞ
a;b;kðxmÞvk; ð28Þ
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where dn(x) is a coefficient and dðnÞ
a;b;kðxmÞ is analytically given by

dðnÞ
a;b;kðxmÞ ¼

d

dx

� �n

da;b;kðxÞ
� �

x¼xm

: ð29Þ

Some detailed expressions of these derivatives are given in Appendix A.

Therefore, a DSC semi-discrete form of the genetic equation can be ex-
pressed as

dvm
dt

¼ �
X

n

dnðxmÞ
XmþW

k¼m�W

dðnÞ
a;b;kðxmÞvk � F ðvmÞ: ð30Þ

To take into account for the temporal discretization, Eq. (30) can be rewritten

in its vector form

dv

dt
¼ GDSCðv; tÞ; ð31Þ

where v = (v1,v2, . . . ,vm, . . . ,vN) and GDSC(v,t) represents the DSC approxima-
tion in the right-hand side of Eq. (30).

The commonly used time stepping schemes, either explicit or implicit, can be

easily used along with the DSC algorithm. In the present study, two explicit

time discretization methods, the explicit Euler scheme and the classical

fourth-order Runge–Kutta method, are employed. For the explicit Euler

scheme, v can be evaluated as

vjþ1 ¼ vj þ DtGDSCðvj; tjÞ ð32Þ
at each time step, while for the Runge–Kutta method

vjþ1 ¼ vj þ 1
6
ðr1 þ 2r2 þ 2r3 þ r4Þ; ð33Þ

in which

r1 ¼ DtGDSCðvj; tjÞ; r2 ¼ DtGDSC v
j þ 1

2
r1; tj þ 1

2
Dt

� �
; ð34Þ

r3 ¼ DtGDSCðvj þ 1
2
r2; tj þ 1

2
DtÞ; r4 ¼ DtGDSCðvj þ r3; tj þ DtÞ: ð35Þ

In the present study, we focus our attention on two DSC kernels, although

various other delta sequence kernels can be similarly employed [43]. The first

kernel considered is a regularized Shannon�s kernel (RSK), Eq. (23), which
has been extensively used in the previous DSC calculations. When we set

W = 1, the present DSC weights, dðnÞ
a;b;kðxÞ, can always be made exactly the same

as those of the second-order central difference scheme (i.e. 1
2D ; 0; � 1

2D for the

first-order derivative and 1
D2
; � 2

D2
; 1

D2
for the second-order derivative) of the

standard FD method by choosing the parameter b appropriately. Another

DSC kernel studied is the Lagrange kernel (LK), Eq. (25). The regularity of

the LK can be increased by using a regularizer as in (23) and the corresponding

DSC approximation can be optimized in a practical application by varying b
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[43]. However, to achieve a comparison between the DSC approach and the

traditional FD scheme, the ordinary LK is used. The half bandwidthW is cho-

sen as W = 32 for both LK and RSK in the present study, and b is set to

b = 3.5D in the RSK.

For a comparison, two conventional FD schemes, the explicit FD (EFD)

and Crank–Nicolson (CN) schemes, are also used to numerically evaluate
the European and American options. The EFD form of Eq. (4) is of the explicit

Euler scheme for the time discretization and the central difference scheme for

the spatial discretization [7,34,10]

vjþ1
i � vj

i

Ds
¼ r2

2
S2i

vjiþ1 � 2v
j
i þ vji�1

ðDSÞ2
þ ðr � qÞSi

vjiþ1 � vji�1
2DS

� rvji ; ð36Þ

where i and j are indices of stock price node and time to expiration instant,
respectively. The CN discretization form of Eq. (4) is [14]

vjþ1
i � vj

i

Ds
¼ r2

4
S2i

vjþ1iþ1 � 2v
jþ1
i þ vjþ1i�1

ðDSÞ2
þ vjiþ1 � 2v

j
i þ vji�1

ðDSÞ2

 !

þ ðr � qÞ
4

Si
vjþ1iþ1 � vjþ1i�1

DS
þ vjiþ1 � vji�1

DS

 !
� r

vjþ1i þ vji
2

: ð37Þ

Two extended lattice approaches are also studied for non-dividend paying

cases of European and American option valuation problems in the present

paper. A comparison between traditional binomial models and PDE methods

has been made by Geske and Shastri [19]. In the present study, we are partic-

ularly interested in a comparison between the high order convergence lattice

approaches and the DSC scheme. One lattice approach is the PP2 method of

Leisen and Reimer [28], and is denoted as PP method in the present study.

The other one is the smooth version (SMO) of the binomial model of Cox et
al. [15], which was suggested by Leisen [26]. The extrapolation technique is also

used as in the original papers. These two lattice approaches can numerically

exhibit order of convergence two for European option valuation, and much

smaller initial errors for American option valuation. The random-time bino-

mial model [27] will not be considered in the present study, since the time incre-

ment is fixed for other methods.
3. Experimental studies

To illustrate the utility of the DSC algorithm and to test its accuracy for op-

tion valuation, both European and American option valuation problems are
investigated in the present study. The cases under study essentially cover all

plain option pricing problems. To comprehensively examine the performance

of the DSC algorithm in solving Black–Scholes equation, the original model
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with variable coefficients is studied in the present paper, which is more difficult

to solve numerically than the one with constant coefficients [19].

For all types of option pricing problems, three maturity times, T = 1, 4, and

7 months, are tested. Other model parameters except dividend payment condi-

tions are fixed as: r = 5.0%, r = 0.3 and strike price X = 45. The greatest error
and the overall accuracy of the approximations are measured, respectively, by
using the maximum absolute error measure,

L1 ¼ maxi¼1;...;N jv̂i � vij; ð38Þ
and the root mean squared error measure,

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðv̂i � viÞ2
vuut ; ð39Þ

where N is the total grid number, vi is the exact Black–Scholes value or bench-

mark value, and v̂i is the numerically estimated option price. All numerical
experiments are conducted on a digital Alpha 600 MHz personal workstation.

To estimate the computational efficiency, the execution time (ET) of every
tested case is calculated as the approximate CPU time for single option with

the expiration date T = 7 months and measured in seconds.

To discretize Eq. (4), a uniform mesh is constructed on the stock price-time

hyperplane, from S = Smin = 0 to S = Smax with a spacing DS, and from s = 0
to s = T with a time increment Ds. In all cases, unless otherwise specified, the
uniform stock price-time mesh employed in the present study is constructed as

follows. For European option valuation: DS = 0.5, Smax = 200, and

Ds = 5.0 · 10�4 (or denoted as D s = 5.0(�4)) month; For American option
valuation: DS = 0.5, Smax = 140, and Ds = 5.0(�4) month.

3.1. European option

The benchmark problem, European option valuation, is of great interest to

academicians in the finance literature. It is often utilized to test the accuracy of

a given numerical scheme [19,16,10]. Both call and put options are studied for

the problem of European option pricing.
3.1.1. European call option

Three types of valuation problems for European call options are treated:

European calls on non-dividend paying assets (ECND), European calls on con-

tinuous dividend paying assets (ECCD), and European calls on discrete divi-

dend paying assets (ECDD). The value of a European call option can be

determined by solving Eq. (4) subject to the initial condition

vðS; 0Þ ¼ maxðST � X ; 0Þ; ð40Þ
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and boundary conditions

vð0; sÞ ¼ 0;

vðS; sÞ ¼ Se�qs � X e�rs as S ! 1;
ð41Þ

where ST is the stock price at expiration date T. The analytic pricing formula of

the European option is available, see Appendix B. The valuation of ECND can

be viewed as a special case of the valuation of ECCD with q = 0. Thus two

types of options can be evaluated by the same procedure. However, there are

some minor differences when the underlying asset pays discrete dividends.

For simplicity, we only consider the single discrete dividend paying case for

European call valuation. At the known ex-dividend date sd, the asset price must
be reduced by the amount of the dividend D to eliminate riskless arbitrage
opportunities

Sðsþd Þ ¼ Sðs�d Þ þ D; ð42Þ
where superscripts + and � denote the instants after and before sd, respectively.
For the valuation of ECDD, the asset price is usually assumed to be made up

with two components: a riskless component that corresponds to the known

dividend during the life of the option and a risky component ([25], Section

2.2.1). The value of the risky component ~S is given by

~S ¼
S for 06s6s�d ;

S � De�rðs�sd Þ for sþd 6s6T :

�
ð43Þ

When the option matures, the dividend will have been paid and the riskless

component will no longer exist. Therefore, to evaluate the option price, one

can apply the Black–Scholes formula by taking underlying asset as ~S and vol-
atility as the one of the risky component ~S. Theoretically, the volatility of the
risky component is different from the volatility of the whole stock price. How-

ever, in practice, they are often treated as being the same. We will also treat

them equally for simplicity. Obviously, after this simplification, the ECDD val-
uation is essentially equivalent to the ECND valuation.

In the present study, the dividend yield ratio is chosen as q = 0.02 for ECCD.

The dollar dividend amount is D = 1 for ECDD, and the ex-dividend dates are

0.5, 2, and 3.5 months for maturities T = 1, 4, and 7 months, respectively. The

European option values are estimated by using both the DSC and FD schemes

in association with the same uniform stock price-time mesh. The approximation

errors and the execution time are given in Table 1. As can be seen from Table 1,

in every case, the approximation error of the DSC approach is smaller than that
of the FD scheme. However, the difference between them is moderate. That is

because, although theoretically the error incurred in a higher-order scheme is

usually significantly less than that of a lower-order scheme, numerically the

higher-order scheme also has difficulty in capturing the dramatically changing



Table 1

Comparison of European call option valuation by using the DSC and the FD based on a normal

mesh

Case Scheme T = 1 T = 4 T = 7 ET

L1 L2 L1 L2 L1 L2

ECND EFD 3.10(�3) 5.02(�4) 1.54(�3) 3.51(�4) 1.15(�3) 2.99(�4) 4.74(�4)
CN 3.20(�3) 5.14(�4) 1.58(�3) 3.60(�4) 1.19(�3) 3.11(�4) 1.40(�3)
LK 2.13(�3) 3.95(�4) 1.05(�3) 2.76(�4) 7.83(�4) 2.38(�4) 5.08(�2)
RSK 2.13(�3) 3.95(�4) 1.05(�3) 2.76(�4) 7.83(�4) 2.38(�4) 4.85(�2)

ECCD EFD 3.09(�3) 5.01(�4) 1.52(�3) 3.49(�4) 1.13(�3) 2.99(�4) 4.74(�4)
CN 3.19(�3) 5.13(�4) 1.57(�3) 3.58(�4) 1.17(�3) 3.07(�4) 1.40(�3)
LK 2.13(�3) 3.95(�4) 1.05(�3) 2.77(�4) 7.83(�4) 2.39(�4) 5.11(�2)
RSK 2.13(�3) 3.95(�4) 1.05(�3) 2.77(�4) 7.83(�4) 2.39(�4) 4.89(�2)

ECCD EFD 3.05(�3) 4.92(�4) 1.43(�3) 3.25(�4) 1.02(�3) 2.64(�4) 4.74(�4)
CN 3.14(�3) 5.04(�4) 1.48(�3) 3.34(�4) 1.06(�3) 2.72(�4) 1.42(�3)
LK 2.07(�3) 3.85(�4) 9.47(�4) 2.49(�4) 6.51(�4) 1.98(�4) 5.26(�2)
RSK 2.07(�3) 3.85(�4) 9.47(�4) 2.49(�4) 6.51(�4) 1.98(�4) 4.99(�2)
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solution in critical regions. On such occasions, a higher-order scheme cannot be

superior to a lower-order scheme in terms of accuracy based on a normal uni-

form mesh. In fact, higher-order schemes are rarely used for the solution of

the Black–Scholes equation in the finance literature.

Fortunately, when a higher-resolution grid is employed to capture the dra-

matic changes of the solution on a small critical region, the discretization error

of this high gradient region can be significantly reduced. For European option

pricing, several adaptive higher-resolution grids are employed on a small crit-
ical region around the strike price X immediately before expiration, each from

Sl
min to Sl

max with a spacing DSl and from s ¼ sl
s to s ¼ sl

e with a time increment

Dsl, l = 1,2,3,. . ., see Fig. 1. Usually, to make sure that the valuation informa-
tion is transmitted properly, the finer mesh is used with a stock price spacing

DSl = DSl+1/m and a corresponding time increment Dsl ¼ Dslþ1=m2ðm 2 ZþÞ.
It is noted that the boundary conditions (41) are approximated as

vðSl
min; sÞ ¼ 0;

vðSl
max; sÞ ¼ Sl

maxe
�qs � X e�rs:

ð44Þ

When s ¼ sl
e is very small, S

l
max and Sl

min can actually be chosen to be much

smaller than Smax and bigger than zero, respectively. Such values are already

large or small enough to ensure that the call will be almost certainly exercised,
or expired out-of-the-money. This tightened boundary condition makes sure

that the resolution of critical region is sufficiently high and the additional com-

putation of the adaptive mesh is relatively small. Moreover, by using approx-

imation (44), there is only one grid which needs to be treated at any moment of
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Fig. 1. An illustration of the adaptive mesh employed in the European option valuation problems.

Here l = 2 and m = 2.
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computation, so that the algorithm is relatively simple. It is also noted that at

the instants s ¼ sl
e, for l = 1,2,3, . . ., the option values of the asset prices which

lie outside of the previous computational domain (the parts represented by the

bold lines in Fig. 1) can also be directly given by Eq. (44).

In the present computation, we use a total of four sets of grids, i.e., three

finer grids and a coarse grid. The total evolution time on all the finer grids is

1/100 month. When s > 1/100 month, the coarse uniform grid is used. The

detailed description of the adaptive mesh employed in European option valu-
ation is given in Table 2. It is noted that the computation on finer grids only

carries for a very short time interval, 1/100 month, which is just the last few

hours of trading from a practice point of view. Consequently, the present algo-

rithm is able to deal with short-dated options, which are the most popularly

traded options.

Based on the same adaptive mesh, the values of European options are

approximated via both the DSC and FD again, see Table 3. It is clear from

Table 3 that the higher-order scheme gives much higher accuracy than that
of the lower-order scheme based on an adaptive mesh. The high resolution grid
Table 2

The adaptive higher-resolution mesh employed in the European option valuation

l Sl
min Sl

max DSl sls sle Dsl

1 44.5 45.5 2.5(�3) 0.0 5.0(�4) 3.125(�7)
2 44.0 46.0 5.0(�3) 5.0(�4) 1.0(�3) 1.25(�6)
3 40.0 50.0 2.5(�2) 1.0(�3) 1.0(�2) 3.125(�5)



Table 3

Comparison of European call option valuation by using the DSC, the FD, the PP and the SMO

Case Scheme T = 1 T = 4 T = 7 ET

L1 L2 L1 L2 L1 L2

ECND EFD 8.20(�4) 1.32(�4) 4.72(�4) 1.06(�4) 3.65(�4) 9.40(�5) 9.48(�4)
CN 1.06(�3) 1.70(�4) 5.36(�4) 1.21(�4) 4.08(�4) 1.05(�4) 3.39(�3)
LK 6.11(�8) 1.13(�8) 2.98(�8) 7.85(�9) 2.22(�8) 6.82(�9) 1.31(�1)
RSK 6.11(�8) 1.13(�8) 2.98(�8) 7.83(�9) 2.22(�8) 6.73(�9) 1.24(�1)
SMO 2.45(�4) 6.01(�5) 5.06(�4) 1.72(�4) 6.80(�4) 2.64(�4) 4.71(�2)
SMO_extra 7.06(�8) 1.49(�8) 1.55(�7) 4.67(�8) 2.16(�7) 7.76(�8) 2.36(�1)
PP 1.98(�8) 3.52(�9) 3.90(�8) 1.01(�8) 5.07(�8) 1.56(�8) 4.67(�2)
PP_extra 1.04(�8) 1.77(�9) 1.96(�8) 5.04(�9) 2.54(�8) 7.78(�9) 2.37(�1)

ECCD EFD 8.16(�4) 1.31(�4) 4.63(�4) 1.05(�4) 3.55(�4) 9.22(�5) 9.23(�4)
CN 1.05(�3) 1.70(�4) 5.29(�4) 1.20(�4) 3.98(�4) 1.03(�4) 3.39(�3)
LK 6.11(�8) 1.13(�8) 2.98(�8) 7.88(�9) 2.22(�8) 6.86(�9) 1.29(�1)
RSK 6.11(�8) 1.13(�8) 2.98(�8) 7.86(�9) 2.22(�8) 6.78(�9) 1.24(�1)

ECDD EFD 8.20(�4) 1.32(�4) 4.72(�4) 1.06(�4) 3.65(�4) 9.40(�5) 9.98(�4)
CN 1.06(�3) 1.70(�4) 5.36(�4) 1.21(�4) 4.08(�4) 1.05(�4) 3.37(�3)
LK 1.26(�7) 3.45(�8) 8.75(�9) 6.04(�9) 5.30(�8) 1.87(�8) 1.30(�1)
RSK 1.26(�7) 3.45(�8) 7.36(�9) 5.61(�9) 5.30(�8) 1.82(�8) 1.25(�1)

Here _extra denotes that the extrapolation technique is used.
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in the critical region enables the scheme to capture the rapid changes of the op-

tion price. At the region of the low resolution grid, since the changes in option

price are relatively slow, the higher-order scheme yields very accurate approx-

imations. However, for the lower-order scheme, the discretization error at the
region of the low resolution grid is still large, hence, the significance of utilizing

adaptive mesh is cancelled out. We further illustrate this observation by esti-

mating the European option values only based on the coarse grid region,

i.e. input the exact Black–Scholes option value to each stock price node at

s = 1/100 month and calculate until it matures by using a coarse uniform mesh

(the similar techniques for binomial tree method refer to [9,16]). The results are

listed in Table 4, which agree with the aforementioned theoretical analysis.

For non-dividend paying case, two lattice approaches are also employed to
evaluate the European option price. The results are also contained in Table 3.

Here time refinements are chosen as 2000 and 2001 for SMO and PP models,

respectively. The corresponding time increment of two lattice approaches in

pricing options with one month maturity is the same as (or approximately

equal to) that used in PDE methods on the normal mesh. Highly accurate re-

sults are obtained by using the PP model. The extrapolation technique is also

used for both models, with much larger time refinements, i.e., 4000 and 4001

for SMO and PP, respectively. Much improvement is achieved by using the
extrapolation in the SMO results, while the accuracy improvement in PP re-

sults is moderate. With a longer execution time, the extrapolation results of



Table 4

Comparison of European call option valuation by using the DSC and the FD

Case Scheme T = 1 T = 4 T = 7 ET

L1 L2 L1 L2 L1 L2

ECND EFD 9.60(�4) 1.55(�4) 4.89(�4) 1.10(�4) 3.73(�4) 9.59(�5) 4.49(�4)
CN 1.06(�3) 1.70(�4) 5.36(�4) 1.21(�4) 4.08(�4) 1.05(�4) 1.37(�3)
LK 8.31(�9) 1.45(�9) 3.59(�9) 1.16(�9) 3.29(�9) 1.47(�9) 5.04(�2)
RSK 8.31(�9) 1.44(�9) 3.59(�9) 9.35(�10) 2.62(�9) 7.98(�10) 4.82(�2)

ECCD EFD 9.57(�4) 1.54(�4) 4.81(�4) 1.09(�4) 3.62(�4) 9.42(�5) 4.49(�4)
CN 1.05(�3) 1.70(�4) 5.29(�4) 1.20(�4) 3.98(�4) 1.03(�4) 1.37(�3)
LK 8.35(�9) 1.46(�9) 3.61(�9) 1.16(�9) 3.24(�9) 1.45(�9) 4.97(�2)
RSK 8.35(�9) 1.45(�9) 3.60(�9) 9.43(�10) 2.64(�9) 8.06(�10) 4.84(�2)

ECDD EFD 9.60(�4) 1.55(�4) 4.89(�4) 1.10(�4) 3.73(�4) 9.59(�5) 4.49(�4)
CN 1.06(�4) 1.70(�4) 5.36(�4) 1.21(�4) 4.08(�4) 1.05(�4) 1.40(�3)
LK 1.60(�8) 4.29(�9) 5.12(�9) 1.92(�9) 5.43(�9) 2.50(�9) 5.21(�2)
RSK 1.96(�8) 4.30(�9) 4.94(�9) 1.71(�9) 5.10(�9) 1.91(�9) 4.91(�2)

Calculations start at s ¼ 1
100
month.
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SMO (PP) model are slightly less (more) accurate than those of the DSC. Gen-

erally speaking, both the DSC and two lattice approaches exhibit similarly very

high accuracy and are much more efficient than the conventional lower order

schemes. It is noted that two lattice approaches were only presented for non-

dividend paying cases in the original Refs. [28,26]. Thus, two dividend paying

cases are not studied for two lattice approaches in the present paper.

3.1.2. European put option

Due to the put-call parity theorem [25], a European put value can be directly

given if the corresponding European call value is known. However, puts do

have some properties that differ from calls, such as the possible range of elas-

ticity. To further test the performance of the DSC for European option valu-

ation problem, European puts on continuous dividend paying assets (EPCD)

are studied. The results of other two dividend cases are similar to those of

EPCD, and are omitted.

The value of a European put can be approximated by numerically solving
Eq. (4) subject to the initial condition

vðS; 0Þ ¼ maxðX � ST ; 0Þ; ð45Þ
and boundary conditions

vðS; sÞ ¼ 0 as s ! 1;

vðS; sÞ ¼ X e�rs as s ! 0þ:
ð46Þ

The dividend yield ratio is chosen as q = 0.07 in the present study. The same

normal and adaptive meshes as in European call option valuation are used.



Table 5

Comparison of European put option valuation by using the DSC and the FD

Scheme T = 1 T = 4 T = 7 ET

L1 L2 L1 L2 L1 L2

EFD1 3.09(�3) 4.99(�4) 1.50(�3) 3.45(�4) 1.11(�3) 2.93(�4) 4.00(�4)
EFD2 8.16(�4) 1.33(�4) 4.62(�4) 1.10(�4) 3.53(�4) 9.94(�5) 8.75(�4)
CN1 3.18(�3) 5.12(�4) 1.55(�3) 3.54(�4) 1.15(�3) 3.02(�4) 2.35(�3)
CN2 1.05(�3) 1.72(�4) 5.29(�4) 1.25(�4) 3.99(�4) 1.12(�4) 5.95(�3)
LK1 2.12(�3) 3.96(�4) 1.05(�3) 2.79(�4) 7.83(�4) 2.42(�4) 4.91(�2)
LK2 6.13(�8) 1.13(�8) 2.98(�8) 7.94(�9) 2.22(�8) 6.89(�9) 1.30(�1)
RSK1 2.12(�3) 3.96(�4) 1.05(�3) 2.79(�4) 7.83(�4) 2.42(�4) 4.77(�2)
RSK2 6.13(�8) 1.13(�8) 2.98(�8) 7.94(�9) 2.22(�8) 6.89(�9) 1.24(�1)
Scheme 1 is calculated on a normal mesh, while scheme 2 is calculated on an adaptive mesh.
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The corresponding DSC and FD results are listed in Table 5. It can seen from

Table 5 that the present results are similar to those in European call option val-

uation. This finding is consistent with that of Geske and Shastri [19]. In sum-

mary, under appropriate conditions, the DSC algorithm outperforms the

lower-order scheme in terms of accuracy and efficiency for the European op-

tion pricing problem.

3.2. American option

As American options can be exercised at any time before expiration, a live

American option must be worth at least its intrinsic value. In general, there is a

critical value, S�, of the underlying asset. For a holder of an American option,

it makes no difference whether to exercise the option or not at this critical

value. The determination of this critical value makes the valuation of American

options a free boundary problem. This leads to the following constraint

condition:

vðS; sÞP
maxðS � X ; 0Þ for American call;

maxðX � S; 0Þ for American put;

�
ð47Þ

which implies

vðS�; sÞ ¼
maxðS� � X ; 0Þ for American call;

maxðX � S�; 0Þ for American put:

�
ð48Þ

Since the critical value S� can not be known in advance, we have to impose the

free boundary conditions as part of the solution procedure, which introduces

considerable difficulties, both theoretically and numerically. Therefore, for
American options, analytic valuation formulae are generally not available, ex-

cept for a few special types, i.e. American calls on non-dividend paying assets

(which actually have identical values as ECND) and American calls on discrete
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dividend paying assets. Alternatively, approximation approaches have been

proposed in the literature. Interested readers may refer to [25] and the refer-

ences therein.

The American option price function v(S,s) satisfies the Black–Scholes equa-
tion (4) together with the auxiliary conditions: the constraint (47) and the pay-

off (40) for a call or (45) for a put. The characteristic of the early exercise
feature of American options depends crucially on the dividend payout of the

underlying stock (see for example [25]). Consequently, the optimal exercise

curve for an American option might be totally different when the underlying

asset is non-dividend paying or dividend paying (discrete or continuous).

Numerically, different solution procedures should be employed to properly

treat different free boundaries. Therefore, three typical valuation problems

which have different characteristics of the early exercise feature are studied sep-

arately in the present work. These problems include all nontrivial American
option valuations.

3.2.1. American calls on discrete dividend paying assets (ACDD)

ACDD will be possibly exercised only at instants immediately prior to the

ex-dividend dates. Thus, the ACDD can be replicated by a portfolio of Euro-

pean compound options with the maturity dates of the compound options

coinciding with the ex-dividend dates. Consequently, the analytic pricing for-

mula for ACDD can be derived according to such a replication strategy, and
is presented in Appendix B.

For simplicity, we only consider the single discrete dividend paying case and

the dividend parameters are the same as those in ECDD valuation. Numeri-

cally, by denoting ~S
�
as the critical risky asset value, the approximated Amer-

ican call price at instant s ¼ sþd is given by

vð~S; sþd Þ ¼
�vð~S; s�d Þ when ~S < ~S

�
;

~S � X when ~SP~S
�
;

�
ð49Þ

where �vð~S; s�d Þ is the approximated American call price at instant s ¼ s�d . Since
the underlying asset does not pay a dividend during s ¼ ½0; s�d �, �vð~S; s�d Þ is actu-
ally the corresponding European call price and can be similarly approximated

as in European call valuation. For the live American call ð~S < ~S
�Þ, its value re-

mains unchanged as time passes across the dividend date. For the American

call with underlying asset ~S > ~S
�
, it will be exercised at instant sþd to capture

the dividend. Numerically, both kinds of American calls, alive or not, are cal-

culated in the whole computational domain. Except the ex-dividend instant,
the computation procedure for ACDD valuation can be the same as that in

European call valuation, and the same uniform mesh as in the European case

is used. Based on such a uniform mesh, the value of ACDD is approximated by

using the DSC and EFD, see Table 6. Similar to the European case, the results

of the DSC are only slightly more accurate than those of the EFD.



Table 6

Comparison of ACDD valuation by using the DSC and the EFD

Scheme T = 1 T = 4 T = 7 ET

L1 L2 L1 L2 L1 L2

EFD1 2.07(�3) 2.85(�4) 1.56(�3) 3.47(�4) 1.15(�3) 3.00(�4) 4.00(�4)
EFD2 1.21(�3) 1.70(�4) 5.39(�4) 1.15(�4) 3.78(�4) 9.50(�5) 4.06(�2)
LK1 1.04(�3) 1.64(�4) 1.00(�3) 2.48(�4) 7.57(�4) 2.19(�4) 5.05(�2)
LK2 4.96(�8) 7.30(�9) 5.58(�8) 1.25(�8) 1.91(�8) 5.66(�9) 3.41(�1)
RSK1 1.04(�3) 1.64(�4) 1.00(�3) 2.48(�4) 7.57(�4) 2.19(�4) 4.72(�2)
RSK2 4.96(�8) 7.30(�9) 1.46(�8) 3.69(�9) 1.91(�8) 5.63(�9) 3.39(�1)
Scheme 1 is calculated on a normal mesh, while scheme 2 is calculated on an adaptive mesh.
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To achieve more accurate results, a suitable adaptive mesh is indispensable.

However, the appropriate adaptive mesh for ACDD is different from the one

used in the European case, since apart from the critical region around strike

price, there is another critical region around ~S
�
before ex-dividend. Before div-

idend paying, there will be no dividend paying from s ¼ sþd to s = T. Hence, the

problem becomes an ECND valuation one with time to expire T � sþd and ini-
tial pay-off function vð~S; sþd Þ, which is given by Eq. (49). Similar to the Euro-
pean option valuation, this pay-off function is not differentiable, because at
critical asset price ~S

�
, the approximated European call (i.e. �vð~S; s�d Þ) price curve

intersects (not tangentially) the early exercise line, ~S � X . Consequently, option
value will undergo sharp changes around ~S

�
before ex-dividend. The discretiza-

tion of this critical region can also induce very serious pricing errors. Hence,

apart from the adaptive region as that used in European valuation problems,

another higher-resolution region is also employed (from ~S
d

min to
~S
d

max with a

spacing D~S
d
and from sd to sd + 1/100 with a time increment Dsd). When

s 2 (sd,sd + 1/100], calculations are carried out on a higher-resolution mesh
and a lower-resolution mesh simultaneously. The detailed description of the

adaptive mesh is given in Table 7, and an illustrative graph is given in Fig. 2.

To initiate the adaptive mesh computation, an off-grid interpolation is re-
quired. It is interesting to note that the DSC algorithm also provides highly

accurate interpolations (set n = 0 in the Eq. (24)). Such interpolation is used
Table 7

The higher resolution mesh employed in ACDD valuation around the critical asset price

sd ~S
d
min

~S
d
max D~S

d
Dsd

0.5 ½~S�� � 2:0 ½~S�� þ 2:5 1.0(�2) 2.0(�7)
2.0 ½~S�� � 2:5 ½~S�� þ 2:5 1.25(�2) 3.125(�7)
3.5 ½~S�� � 3:0 ½~S�� þ 2:0 1.25(�2) 3.125(�7)
Here ½~S�� denotes the asset node on the coarse grid, which has the smallest distance departed from
the critical price ~S

�
among all coarse grid nodes.
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Fig. 2. An illustration of the adaptive mesh employed in the ACDD pricing problems immediately

prior to the ex-dividend date. The critical region is marked by the bold lines in the figure.

S. Zhao, G.W. Wei / Appl. Math. Comput. 167 (2005) 383–418 405
in both the DSC and FD algorithms. Unlike the European counterpart, the

boundary conditions for the second critical region is relevantly difficult to han-

dle. The boundary condition at ~S ¼ ~S
d

max can be approximated as

vð~Sd

max; sÞ ¼ ~S
d

max � X : ð50Þ
However, the explicit expression of the boundary condition imposed at

~S ¼ ~S
d

min is unavailable. Numerically, to advance to next time step, the deriva-

tive values of price at some nodes, which lie in the critical region and close to
~S ¼ ~S

d

min, are required to be known. In the present computation, those deriva-

tive values are explicitly approximated, which involves certain points outside

the left boundary of critical region. The values on those points are interpolated

from the option values on the lower-resolution mesh at each time step. Conse-

quently, to ensure a high accuracy, the option values calculated on the lower-

resolution mesh are corrected by those on the higher-resolution mesh, after

each time increment. Again, the DSC interpolation is used both in the DSC

and FD algorithms. Quite satisfactory accuracy can be obtained by using this
boundary treatment, provided that the lasting time length of the higher-resolu-

tion mesh is sufficiently small, such as 1/100 month here. However, it is rele-

vantly difficult to implement such boundary treatment within an implicit

time-stepping scheme. Therefore, for simplicity, we do not consider the CN

scheme in the ACDD valuation. The approximation errors and execution time,

obtained by using the DSC and EFD algorithms in association with the adap-

tive mesh, are also presented in Table 6. Similar to European cases, significant

improvement is achieved in the DSC results, while the improvement in the
EFD results is very small. These results indicate that the DSC approach works

extremely well in pricing the American option.
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3.2.2. Continuous optimal exercise boundaries

American calls on continuous dividend paying assets (ACCD), American

puts on continuous dividend paying assets (APCD), and American puts on

non-dividend paying assets (APND) have similar optimal exercise boundaries.

The optimal exercise boundaries exist at any living time, and are monotonic

and continuous functions of time. Furthermore, there is a common feature
for the optimal exercise boundary of these three cases, i.e., both the option

value v and its derivative ov/oS are continuous across the optimal exercise

boundary, which is known as the high contact condition in the finance litera-

ture. In particular, if we denote the optimal exercise boundary by S�(s), the
value of these three types of American options can be determined by solving

Eq. (4) subject to the payoff condition (40) and free boundary conditions

S�ð0Þ ¼ maxðX ; rX=qÞ;
vð0; sÞ ¼ 0;

vðS�ðsÞ; sÞ ¼ S�ðsÞ � X ;

ð51Þ

for calls or conditions (45) and

S�ð0Þ ¼ minðX ; rX=qÞ;
vðS; sÞ ¼ 0 as S ! 1;

vðS�ðsÞ; sÞ ¼ X � S�ðsÞ;
ð52Þ

for puts, respectively.
Numerically, the free boundary conditions can be approximated by means

of Eq. (47) as [7,19]

vji ¼
maxðSi � X ;�vji ; 0Þ for American call option;

maxðX � Si;�v
j
i ; 0Þ for American put option;

(
ð53Þ

where vji ¼ vðiDS; jDsÞ, and �vji is the value directly calculated from the last time

step j�1 based on the discretized form of Eq. (4). The time discretization error

of (53) is of first order, thus the Runge–Kutta method is replaced by the explicit

Euler method, Eq. (32), in the DSC algorithm for time-stepping. In other

words, for both the DSC and EFD schemes, the same temporal discretization

is employed, and the time-stepping error is of first order.
No closed form valuation formula exists for these three types of options.

The accuracy of the numerical approximation is commonly assessed by a com-

parison with benchmark values estimated by using the binomial tree method

[9]. In the present study, we first evaluate the European counterparts of these

three types of options by using the binomial tree method with very large time

refinements. The binomial model parameters used are those of [20,9]. The re-

sults are given in Table 8. We then estimate the benchmark values of these

three types of American options by using the binomial tree method and with



Table 8

European option valuation by using the binomial tree method

Case T Nbt L1 L2 ET

EPND 1 124001 8.66(�6) 1.56(�6) 1.23(+2)

4 248001 7.97(�6) 2.20(�6) 4.97(+2)

7 320001 7.75(�6) 2.81(�6) 1.13(+3)

EPCD 1 124001 9.60(�6) 1.64(�6) 1.64(+2)

4 248001 9.56(�6) 2.34(�6) 9.05(+2)

7 320001 9.66(�6) 3.04(�6) 1.82(+3)

ECCD 1 124001 9.82(�6) 1.69(�6) 1.24(+2)

4 248001 1.02(�5) 2.50(�6) 9.18(+2)

7 320001 1.06(�5) 3.33(�6) 1.16(+3)

Nbt denotes the total number of time refinement used in the binomial tree method. EPND denotes

the European put on non-dividend paying assets.
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the same time refinements as in Table 8. Therefore, the approximation errors in

Table 8 provide the accuracy level of these benchmark values. It should be

emphasized that the execution time in Table 8 is very large. Moreover, the exe-

cution time of American option valuation via the binomial tree method is even

larger than (1.82–3.58 times of) that of the European case. This gives an inkling

on how expensive the computational cost would be by using a lower-order

approximation scheme to achieve a satisfactory accuracy.

The values of three options are approximated by using the DSC and EFD
schemes based on the same uniform mesh, see Table 9. In general, the DSC re-

sults are more accurate than those of the EFD. For the present American option

valuation problem, it is generally very difficult to design a fully adaptive mesh

which can well control the discretization error. Although a high contact condi-

tion holds at the optimal exercise boundary, the gamma values of the option

prices are discontinuous on the optimal exercise boundary. Thus, the discretiza-

tion errors along the free boundary are relatively large and may affect the final

accuracy. On the other hand, the optimal exercise boundary is unknown in ad-
vance and exists during the whole life of options, so that the efficiency of using a

higher-resolution grid at the critical region of the optimal exercise boundary is

relatively low. Therefore, for simplicity, we just use a relatively finer grid in the

whole domain (an even finer grid is employed from s = T � 1 to s = T) and only

one adaptive region is used around the strike price as in the European case. It is

noted that, since the S�(0) may be different from X (Eqs. (51) and (52)), the crit-

ical region generally has to include more asset price nodes than the European

case. In the present study, more difficult model parameters are selected, i.e.,
q = 0.02 for ACCD and q = 0.07 for APCD, while other model parameters

are unchanged. Consequently, the boundary of the critical region must sat-

isfy ½Sl
min; S

l
max� � ½45; 112:5� and ½Sl

min; S
l
max� � ½32:14; 45� for calls and puts,

respectively. Corresponding, in order to avoid a large computational burden,



Table 9

Comparison of APND, APCD, and ACCD valuation by using the DSC, the EFD, the PP and the

SMO

Case Scheme T = 1 T = 4 T = 7 ET

L1 L2 L1 L2 L1 L2

APND EFD1 3.43(�3) 6.81(�4) 1.80(�3) 5.08(�4) 1.38(�3) 4.40(�4) 7.12(�4)
EFD2 2.77(�4) 5.69(�5) 2.22(�4) 6.26(�5) 1.91(�4) 5.98(�5) 9.42(�3)
LK1 1.67(�3) 3.72(�4) 7.56(�4) 2.36(�4) 5.35(�4) 1.94(�4) 7.30(�3)
LK2 1.00(�5) 2.24(�6) 6.39(�6) 2.56(�6) 8.10(�6) 2.97(�6) 9.95(�2)
RSK1 1.64(�3) 3.65(�4) 7.42(�4) 2.32(�4) 5.26(�4) 1.91(�4) 6.48(�3)
RSK2 1.00(�5) 2.23(�6) 6.36(�6) 2.54(�6) 8.03(�6) 2.95(�6) 9.38(�2)

APCD EFD1 3.09(�3) 5.98(�4) 1.51(�3) 4.13(�4) 1.11(�3) 3.52(�4) 7.12(�4)
EFD2 2.43(�4) 5.01(�5) 1.17(�4) 3.43(�5) 8.94(�5) 3.01(�5) 9.96(�3)
LK1 1.92(�3) 4.47(�4) 9.88(�4) 3.24(�4) 7.46(�4) 2.83(�4) 7.30(�3)
LK2 1.47(�5) 3.99(�6) 8.77(�6) 3.99(�6) 8.32(�6) 4.18(�6) 1.05(�1)
RSK1 1.92(�3) 4.48(�4) 9.94(�4) 3.26(�4) 7.51(�4) 2.85(�4) 6.48(�3)
RSK2 1.47(�5) 4.00(�6) 8.79(�6) 4.00(�6) 8.34(�6) 4.20(�6) 9.98(�2)

ACCD EFD1 3.10(�3) 5.99(�4) 1.53(�3) 4.19(�4) 1.14(�3) 3.60(�4) 7.12(�4)
EFD2 2.44(�4) 4.60(�5) 1.31(�4) 3.41(�5) 9.68(�5) 2.86(�5) 1.31(�2)
LK1 2.03(�3) 5.24(�4) 1.13(�3) 4.26(�4) 9.02(�4) 3.90(�4) 7.30(�3)
LK2 1.54(�5) 4.01(�6) 9.93(�6) 3.56(�6) 8.54(�6) 3.62(�6) 1.33(�1)
RSK1 2.03(�3) 5.44(�4) 1.17(�3) 4.52(�4) 9.41(�4) 4.16(�4) 6.58(�3)
RSK2 1.59(�5) 4.13(�6) 1.03(�5) 3.71(�6) 8.88(�6) 3.77(�6) 1.29(�1)

Scheme 1 is calculated on the same normal mesh, while scheme 2 is calculated on the same adaptive

mesh.
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the highest resolution in the critical region is much lower than that used in the

European option valuation, see Table 10.
Table 10

The adaptive higher-resolution mesh employed in valuation of APND, APCD, and ACCD

Case l Sl
min Sl

max DSl sls sle Dsl

APND 1 42.5 47.5 2.5(�2) 0.0 5.0(�3) 1.25(�6)
2 40.0 50.0 5.0(�2) 5.0(�3) 5.0(�2) 5.0(�6)
3 0.0 140.0 2.5(�1) 5.0(�2) 6.0 1.25(�4)
4 0.0 140.0 1.25(�1) 6.0 7.0 3.125(�5)

APCD 1 31.5 46.5 2.5(�2) 0.0 5.0(�3) 1.25(�6)
2 30.0 50.0 5.0(�2) 5.0(�3) 5.0(�2) 5.0(�6)
3 0.0 140.0 2.5(�1) 5.0(�2) 6.0 1.25(�4)
4 0.0 140.0 1.25(�1) 6.0 7.0 3.125(�5)

ACCD 1 42.5 114.5 2.5(�2) 0.0 5.0(�3) 1.25(�6)
2 40.0 120.0 5.0(�2) 5.0(�3) 5.0(�2) 5.0(�6)
3 0.0 140.0 2.5(�1) 5.0(�2) 6.0 1.25(�4)
4 0.0 140.0 1.25(�1) 6.0 7.0 3.125(�5)

In three cases above, the maturity time is T = 7 months. For other maturity times, the mesh can be

constructed in the similar manner.
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The approximation errors and the execution time of the DSC and EFD

schemes in association with the same adaptive mesh are also listed in Table

9. As can be seen from Table 9, for both the DSC and FD, the execution time

roughly increases 15 times after using the adaptive mesh. At the same time, by

using the adaptive mesh, the DSC and the EFD results are round 100 and 10

times more accurate than those obtained by using the normal mesh, respec-
tively. The improvement of accuracy is dramatically high in the DSC results,

while it is moderate in the EFD results. The accuracy of the DSC results is

actually the same as the benchmark values. However, the DSC algorithm is

much faster than the traditional binomial tree method, see both Tables 8

and 9. In particular, The execution time of the traditional binomial tree method

is from 18270 to 35238 times larger than that of the DSC algorithm. This re-

veals that in terms of accuracy and efficiency, the DSC approach remarkably

outperforms the conventional lower-order schemes.
To investigate the spatial discretization error of both the DSC and EFD

schemes in depth, a numerical convergence test is performed. For simplicity,

we focus ourselves on the valuation of APND with T = 7 month. By keeping

Dsl very small and unchanged, we refine the entire adaptive mesh twice. The
option prices approximated by both the DSC and FD at the strike (S = 45)

are presented in Table 11. The numerically tested spatial discretization order

of the DSC scheme for American option valuation is higher than that of the

EFD scheme, however, they all are just second order convergence. The reason
for the low displayed order of the DSC scheme is due to the complicate nat-

ure of numerical American option valuation problem. In particular, the gam-

ma of option prices is discontinuous which reduces the accuracy of the DSC

scheme.
Table 11

APND valuation based on different adaptive meshes

Scheme Mesh Value Change Ratio ET

DSC 1 0.20893750 1.96

2 0.20894109 3.59(�6) 4.47

3 0.20894181 7.19(�7) 4.99 7.45

EFD 1 0.20903803 2.06(�1)
2 0.20896591 7.21(�5) 3.74(�1)
3 0.20894799 1.79(�5) 4.03 8.49(�1)

Here in mesh 1, 2, and 3, Sl
min; Sl

max; sls, and sle are the same in Table 10. The time increments of
three adaptive meshes are the same and are 10 times smaller than those listed in Table 10, i.e.

Ds1 = 1.25(�7), Ds2 = 5.0(�7), Ds3 = 1.25(�5), and Ds4 = 3.125(�6). The spacing sizes DSl of mesh

2 are the same as those given in Table 10, while the spacing sizes of mesh 1 and 3 are half and twice

of those of mesh 2, respectively. Change is the difference in the solution from the coarser mesh.

Ratio is the ratio of the change on successive meshes.



Table 12

The APND valuation by using the PP and the SMO approaches

Scheme T = 1 T = 4 T = 7 ET

L1 L2 L1 L2 L1 L2

SMO 2.25(�4) 5.99(�5) 4.34(�4) 1.56(�4) 5.69(�4) 2.32(�4) 1.14(�1)
SMO_extra 9.00(�6) 1.45(�6) 1.69(�5) 2.10(�6) 4.02(�5) 3.66(�6) 6.18(�1)
PP 3.56(�5) 5.46(�6) 1.21(�4) 2.29(�5) 1.87(�4) 4.03(�5) 1.15(�1)
PP_extra 8.98(�6) 1.45(�6) 1.65(�5) 2.08(�6) 4.38(�5) 3.77(�6) 6.18(�1)
Here _extra denotes that the extrapolation technique is used. The time refinements used in the SMO

and PP models are the same as those used in European call valuation.
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Although having the similar convergence order, the DSC does have much

smaller approximation error than the EFD scheme. For example, in Table 9,

the DSC results are generally 10 times more accurate than those of the EFD

scheme. Since the execution time of the EFD scheme is only 10 times faster

than that of the DSC algorithm, to achieve the same accuracy level of the

DSC, it would consume longer computational time than the DSC scheme.

To give an example calculation, we also consider the APND with T = 7 month.

By using an adaptive mesh with twicely refined resolutions (i.e. DSl/4 and Dsl/
16) as those reported in Table 10, the EFD results have the errors:

L1 = 1.84(�5) and L2 = 5.77(�6). These errors are still larger than those of
the DSC results reported in Table 9, while the execution time of the EFD

scheme now is 6.45(�1) second, which is 6.5 times of that of the LK scheme.

In summary, the DSC scheme performs better than the low accuracy FD

scheme for the American option valuation.

In order to compare the DSC with other higher order numerical methods,

the APND values are also approximated by the SMO and PP models, see Table
12. The time refinements of two models are keeping the same as those in

ECND valuation. Similar to the European case, after extrapolation, very accu-

rate results are obtained for both lattice approaches, which are at the same

accuracy level as the DSC results. However, the execution time now is much

larger than that of the DSC results. In terms of efficiency, the DSC scheme

is better than two higher order lattice approaches for the American option

valuation.
3.2.3. American puts on discrete dividend paying assets (APDD)

The optimal exercise boundary of APDD is very irregular and complicated.

The numerical valuation of APDD is rarely reported in the finance literature,

partly because of the computational difficulty of tracking the optimal exercise

boundary. Although no analytic valuation formula exists for APDD, some

general behaviors of the optimal exercise boundary S�(s) are known (see

[25], Section 4.1.6). Let us consider the single dividend case first. The optimal
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exercise boundary is closely related to the competition between the interest in-

come, X ½erðs�sd Þ � 1�, and the discrete dividend, D. For example, when

X ½erðs�sd Þ � 1� < D, the benefit from the asset price decline of amount D is more

attractive than the interest income gained, so that early exercise is not optimal.

In general, there exists a critical value s�d , such that

X ½erðs�d�sd Þ � 1� ¼ D: ð54Þ
This gives

s�d ¼ sd þ
1

r
ln 1þ D

X

� �
: ð55Þ

Within the interval ½sd ; s�d �, the holder will not exercise the put no matter how
low the asset price attains, since X ½erðs�sd Þ � 1�6D. When s > s�d (now

X ½erðs�sd Þ � 1� > D), early exercise may become optimal provided that the put
is sufficiently deep in-the-money. The similarly properties hold for multi divi-

dend case, such as three dividend case considered here. With dividend amount

D1, D2, and D3, and ex-dividend dates s1, s2, and s3, we have S�(s) = 0 for
s 2 ðsj; s�j �, j = 1,2,3. Here critical values s�j can be also analytically given by

s�j ¼ sj þ
1

r
ln 1þ Dj

X

� �
; j ¼ 1; 2; 3: ð56Þ

In the present numerical study, s�j is used as the benchmark for evaluating
numerical results. For simplicity, we only consider the DSC algorithm with

RSK kernel for this problem. The numerical results, obtained by using the

DSC algorithm in association with normal uniform meshes of different
Table 13

The numerical simulation results of APDD by using the DSC

Case DS Ds s�j ŝ�j L1 ET

1 0.5 6.25(�4) 6.151960685 6.151875000 8.57(�5) 6.80(�3)
0.25 1.5625(�4) 6.151960685 6.151875000 8.57(�5) 2.75(�2)
0.125 3.90625(�5) 6.151960685 6.151953125 7.56(�6) 1.10(�1)

2 0.25 1.5625(�4) 1.829643397 1.829531250 1.12(�4) 2.78(�2)
5.329643396 5.329531250

0.125 3.90625(�5) 1.829643397 1.829609375 3.40(�5) 1.11(�1)
5.329643396 5.329609375

3 0.125 3.90625(�5) 0.915742505 0.915742187 3.18(�7) 1.11(�1)
4.165742505 4.165742187

5.665742505 5.665742187

Cases 1, 2 and 3 represent that the underlying asset pays 1, 2 and 3 discrete dividend, respectively.

In all the three cases, T = 7 months. In case 1, D1 = 0.5 and s1 = 3.5 months; In case 2,

D1 = D2 = 0.25, s1 = 0.5 and s2 = 4.0 months; In case 3, D1 = D2 = D3 = 0.125, s1 = 0.25, s2 = 3.5
and s3 = 5.0 months.
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Fig. 3. The simulated behavior of the optimal exercise boundary S�(s) as a function of s for
APDD. (a) one dividend model; (b) two dividend model; (c) three dividend model. The model

parameters are the same as those in Table 13.
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resolutions, are assessed by a comparison of the estimated ŝ�j with the analytic
value s�j , see Table 13. The estimated optimal exercise boundaries are shown in
Fig. 3. These numerical results agree very well with the theoretical analysis,

which means that the DSC approach is robust and accurate for the American

option valuation.
4. Conclusion

This paper explores the utility of the discrete singular convolution (DSC)

algorithm for solving the Black–Scholes equation. DSC kernels of Shannon

and Lagrange are employed for this application. Two classes of financial option

valuation problems, which cover all nontrivial plain option pricing problems,

are utilized to illustrate the robustness and accuracy of the present approach.
All the DSC results are validated either by the analytical solution or by the bino-

mial tree method. Extensive comparisons are carried out with two high accuracy

lattice approaches and two standard finite difference FD schemes.

The first class of problems is European option valuation. Three different div-

idend payout cases, non-dividend, continuous dividend, and discrete dividend

cases, are employed to test the present approach. The results are more accurate

than those obtained by using FD schemes. The detailed investigation on the

generation of the numerical approximation error is addressed. An adaptive
mesh is utilized to capture the dramatic changes of the option value in a certain

critical region. Excellent enhancement of efficiency and accuracy is achieved by

the DSC algorithm. With a relatively low computational cost, the final results

are accurate to eight significant figures, which is over three orders of magnitude

better than the FD scheme based on the same adaptive mesh. For non-dividend

paying case, the DSC results achieve the same high accuracy level as those of

the higher order of convergence binomial methods.

In the second class of problems, we consider the American option pricing.
The first problem in this class is the valuation of American calls on discrete div-

idend paying assets. By using a reasonable mesh, we obtain results with errors

as small as 10�8 in all the DSC computations, which is at least four orders of

magnitude better than the explicit FD (EFD) scheme based on the same adap-

tive mesh. The second problem considered includes three kinds of American

options. Their exercise boundaries are similar and the closed form analytical

pricing formulas do not exist. The benchmark values are calculated by using

a standard binomial tree method, with a very high time refinements. Our results
are in excellent agreement with the benchmark values. However, the computa-

tional cost of the binomial tree method is from 18270 to 35238 times larger

than that of the DSC algorithm. For this American option valuation problem,

numerical convergence test shows that although the displayed spatial discreti-

zation order of the DSC algorithm is only slightly higher than that of the EFD
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scheme, the DSC scheme does have much smaller approximation error. Based

on the same adaptive mesh, the DSC results are 10 times more accurate than

those of the EFD scheme, so that a larger computational effort is required

for the EFD scheme to achieve the same level of accuracy as the DSC scheme.

Two extended lattice approaches are also employed for the valuation of Amer-

ican puts on non-dividend paying assets. Again, results of the same accuracy
level are obtained by both high accuracy binomial models and the DSC

scheme. However, the DSC is computationally cheaper than these two bino-

mial models. The last problem considered is the valuation of American puts

on discrete dividend paying assets (APDD). The optimal exercise boundaries

of APDD are approximated by using the DSC algorithm. The results match

well with theoretical ones. These studies indicate that the DSC algorithm is effi-

cient, accurate, and reliable for numerical option valuation problems.
Appendix A. DSC differential kernels

The differentiation in Eq. (29) can be easily carried out for a given da,b;k(x).

For example, if

dp
D;b;k

ðxÞ ¼
sin p

D ðx� xkÞ
p
D ðx� xkÞ

e�ððx�xkÞ2=2b2Þ; ðA:1Þ

we have for x 5 xk [41]

dð1Þ
p
D;b;k

ðxÞ ¼
cos p

D ðx� xkÞ
ðx� xkÞ

�
sin p

D ðx� xkÞ
p
D ðx� xkÞ2

�
sin p

D ðx� xkÞ
p
D b2

( )

� exp �ðx� xkÞ2

2b2

 !
; ðA:2Þ

and

dð2Þ
p
D;b;k

ðxÞ ¼ �
p
D sin

p
D ðx� xkÞ

ðx� xkÞ
� 2

cos p
D ðx� xkÞ

ðx� xkÞ2
� 2

cos p
D ðx� xkÞ

b2

(

þ2
sin p

D ðx� xkÞ
p
D ðx� xkÞ3

þ
sin p

D ðx� xkÞ
p
D ðx� xkÞb2

þ
sin p

D ðx� xkÞ
p
D b4

ðx� xkÞ
)

� exp �ðx� xkÞ2

2b2

 !
: ðA:3Þ

At x = xk, it is convenient to evaluate these derivatives separately

dð1Þ
p
D;b;k

ðxkÞ ¼ 0; and dð2Þ
p
D;b;k

ðxkÞ ¼ � 1
3

3þ p2

D2
b2

b2
: ðA:4Þ
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Similarly, the differentiation in Eq. (29) can also be easily carried out for a fi-

nite Lagrange kernel

da;b;kðxÞ ¼
YW

i¼�W ;i 6¼k

x� xi

xk � xi
: ðA:5Þ

We have

dð1Þ
a;b;kðxÞ ¼

XW
j¼�W ;j 6¼k

1

xk � xj

YW
i¼�W ;i6¼k;j

x� xi

xk � xi
; ðA:6Þ

dð2Þ
a;b;kðxÞ ¼

XW
j;m¼�W ;j 6¼k;m 6¼k;m6¼j

1

ðx� xjÞðx� xmÞ
YW

i¼�W ;i 6¼k;j;m

x� xi

xk � xi
: ðA:7Þ

Note that the differentiation matrix in Eq. (28) is in general banded. This gives

rise to great advantage in large scale computations. Extensions to higher

dimensions can be realized by tensorial products.
Appendix B. Analytic pricing formulae

For a European call option, the analytic Black–Scholes fair value can be

solved exactly from Eqs. (4), (40), and (41) [5],

vðS; sÞ ¼ Se�qsNðd1Þ � X e�rsNðd2Þ; ðB:1Þ

where

d1 ¼
ln S

X þ r � qþ r2

2

� �
s

r
ffiffiffi
s

p ; d2 ¼ d1 � r
ffiffiffi
s

p
; ðB:2Þ

and N( Æ ) is the cumulative probability distribution function for a standardized
normal variable:

NðuÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z u

�1
e�x2=2 dx: ðB:3Þ

The formula for the value of an American call option on a stock paying a

single dividend was suggested by Roll [33], Geske [17] and Whaley [39]

vð~S; sÞ ¼ ~S 1� N 2 �a1;�b1;

ffiffiffiffiffiffiffiffiffiffiffiffi
s � sd

s

r� �� �
þ De�rðs�sd ÞNða2Þ

� X e�rðs�sd ÞNða2Þ þ e�rsN 2 �a2; b2;�
ffiffiffiffiffiffiffiffiffiffiffiffi
s � sd

s

r� �� �
; ðB:4Þ
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where

a1 ¼
ln

~S
~S
� þ ðr þ r2

2
Þðs � sdÞ

r
ffiffiffiffiffiffiffiffiffiffiffiffi
s � sd

p ; a2 ¼ a1 � r
ffiffiffiffiffiffiffiffiffiffiffiffi
s � sd

p
;

b1 ¼
ln

~S
X þ ðr þ r2

2
Þs

r
ffiffiffi
s

p ; b2 ¼ b1 � r
ffiffiffi
s

p
:

ðB:5Þ

Here N2(a,b;q) is the standard bivariate normal distribution function with cor-
relation coefficients q

N 2ða; b; qÞ ¼
Z a

�1

Z b

�1

1

2p
1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
� exp � x02 � 2qx0y0 þ y02

2ð1� q2Þ

� �
dx0 dy0; ðB:6Þ

and ~S
�
is given by the solution of algebraic equation

~S
� þ D� X ¼ vð~S�

; sdÞ; ðB:7Þ

where vð~S�
; sdÞ is the European call price given by the Black–Scholes formula.

It can be shown mathematically that D > X ½1� e�rsd � is a necessary condition
for the existence of solution to Eq. (B.7). The generalization of the above price

formula to multiple discrete dividends was discussed by Selby and Hodges [35].
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