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Abstract. A weak Galerkin (WG) method is introduced and numerically te sted for the
Helmholtz equation. This method is �exible by using discont inuous piecewise poly-
nomials and retains the mass conservation property. At the s ame time, the WG �nite
element formulation is symmetric and parameter free. Sever al test scenarios are de-
signed for a numerical investigation on the accuracy, conve rgence, and robustness of
the WG method in both inhomogeneous and homogeneous media ov er convex and
non-convex domains. Challenging problems with high wave nu mbers are also exam-
ined. Our numerical experiments indicate that the weak Gale rkin is a �nite element
technique that is easy to implement, and provides very accur ate and robust numerical
solutions for the Helmholtz problem with high wave numbers.

AMS subject classi�cations : 65N15, 65N30, 76D07, 35B45, 35J50

Key words : Galerkin �nite element methods, discrete gradient, Helmh oltz equation, large wave
numbers, weak Galerkin.

1 Introduction

We consider the Helmholtz equation of the form

�r� (dr u) � k2u= f in W, (1.1a)

r u �n � iku= g on ¶W, (1.1b)
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where k> 0 is the wave number, f 2 L2(W) represents a harmonic source,g2 L2(¶W) is
a given data function, and d = d(x,y) > 0 is a spatial function describing the dielectric
properties of the medium. Here W is a polygonal or polyhedral domain in Rd (d= 2,3).

Under the assumption that the time-harmonic behavior is ass umed, the Helmholtz
equation (1.1a) governs many macroscopic wave phenomena in the frequency domain
including wave propagation, guiding, radiation and scatte ring. The numerical solution
to the Helmholtz equation plays a vital role in a wide range of applications in electromag-
netics, optics, and acoustics, such as antenna analysis andsynthesis, radar cross section
calculation, simulation of ground or surface penetrating r adar, design of optoelectronic
devices, acoustic noise control, and seismic wave propagation. However, it remains a
challenge to design robust and ef�cient numerical algorithm s for the Helmholtz equation,
especially when large wave numbers or highly oscillatory so lutions are involved [37].

For the Helmholtz problem (1.1a)-(1.1b), the correspondin g variational form is given
by seeking u2 H1(W) satisfying

(dr u,r v) � k2(u,v)+ ikhu,vi ¶W=( f ,v)+ hg,vi ¶W, 8v2 H1(W), (1.2)

where (v,w) =
R

Wvwdx and hv,wi ¶W =
R

¶Wvwds. In a classic �nite element procedure,
continuous polynomials are used to approximate the true sol ution u. In many situa-
tions, the use of discontinuous functions in the �nite elemen t approximation often pro-
vides the methods with much needed �exibility to handle more complicated practical
problems. However, for discontinuous polynomials, the str ong gradient r in (1.2) is no
longer meaningful. Recently developed weak Galerkin �nite e lement methods [33,38,39]
provide means to solve this dif�culty by replacing the differ ential operators by the weak
forms as distributions for discontinuous approximating fu nctions.

Weak Galerkin (WG) methods refer to general �nite element tec hniques for partial
differential equations and were �rst introduced and analyze d in [33] for second order
elliptic equations. Through rigorous error analysis, opti mal order of convergence of the
WG solution in both discrete H1 norm and L2 norm is established under minimum reg-
ularity assumptions in [33]. The mixed weak Galerkin �nite el ement method is studied
in [34]. The WG methods are by design using discontinuous app roximating functions.

In this paper, we will apply WG �nite element methods [33, 38, 3 9] to the Helmholtz
equation. The WG �nite element approximation to (1.2) can be d erived naturally by
simply replacing the differential operator gradient r in (1.2) by a weak gradient r w:
�nd uh 2 Vh such that for all vh 2 Vh we have

(dr wuh,r wvh) � k2(u0,v0)+ ikhub,vbi ¶W=( f ,v0)+ hg,vbi ¶W, (1.3)

where u0 and ub represent the values of uh in the interior and the boundary of the triangle
respectively. The weak gradient r w will be de�ned precisely in the next section. We
note that the weak Galerkin �nite element formulation (1.3) i s simple, symmetric and
parameter free.

To fully explore the potential of the WG �nite element formula tion (1.3), we will in-
vestigate its performance for solving the Helmholtz proble ms with large wave numbers.
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It is well known that the numerical performance of any �nite el ement solution to the
Helmholtz equation depends signi�cantly on the wave number k. When k is very large–
representing a highly oscillatory wave, the mesh size h has to be suf�ciently small for
the scheme to resolve the oscillations. To keep a �xed grid res olution, a natural rule is to
choosekh to be a constant in the mesh re�nement, as the wave number k increases [6,23].
However, it is known [4, 5, 23, 24] that, even under such a mesh re�nement, the errors of
continuous Galerkin �nite element solutions deteriorate ra pidly when k becomes larger.
This non-robust behavior with respect to k is known as the ”pollution effect”.

To the end of alleviating the pollution effect, various cont inuous or discontinuous �-
nite element methods have been developed in the literature f or solving the Helmholtz
equation with large wave numbers [3–5,8,9,12,14–18,20,26,27]. A commonly used strat-
egy in these effective �nite element methods is to include som e analytical knowledge of
the Helmholtz equation, such as characteristics of traveli ng plane wave solutions, asymp-
totic solutions or fundamental solutions, into the �nite ele ment space. Likewise, analyt-
ical information has been incorporated in the basis functio ns of the boundary element
methods to address the high frequency problems [10, 19, 25]. On the other hand, many
spectral methods, such as local spectral methods [6], spectral Galerkin methods [31, 32],
and spectral element methods [2,21] have also been developed for solving the Helmholtz
equation with large wave numbers. Pollution effect can be ef fectively controlled in these
spectral type collocation or Galerkin formulations, becau se the pollution error is directly
related to the dispersion error, i.e., the phase difference between the numerical and exact
waves [1,22], while the spectral methods typically produce negligible dispersive errors.

The objective of the present paper is twofold. First, we will introduce weak Galerkin
methods for the Helmholtz equation. The second aim of the pap er is to investigate the
performance of the WG methods for solving the Helmholtz equa tion with high wave
numbers. To demonstrate the potential of the WG �nite element methods in solving
high frequency problems, we will not attempt to build the ana lytical knowledge into the
WG formulation (1.3) and we will restrict ourselves to low or der WG elements. We will
investigate the robustness and effectiveness of such plain WG methods through many
carefully designed numerical experiments.

The rest of this paper is organized as follows. In Section 2, we will introduce a weak
Galerkin �nite element formulation for the Helmholtz equati on by following the idea
presented in [33]. Implementation of the WG method for the pr oblem (1.1a)-(1.1b) is
discussed in Section 3. In Section 4, we shall present some numerical results obtained
from the weak Galerkin method with various orders. Finally, this paper ends with some
concluding remarks.

2 A weak Galerkin �nite element method

Let Th be a partition of the domain W with mesh size h. Assume that the partition Th is
shape regular so that the routine inverse inequality in the �n ite element analysis holds
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true (see [13]). Denote by Pm(T) the set of polynomials in T with degree no more than
m, and Pm(e), e2 ¶T, the set of polynomials on each segment (edge or face) of¶T with
degree no more than m.

For m � 0 and given Th, we de�ne the weak Galerkin (WG) �nite element space as
follows

Vh =
�

v= f v0,vbg2 L2(W) : f v0,vbgjT 2 Pm(T) � Pm(e), e2 ¶T, 8T 2Th
	

, (2.1)

where v0 and vb are the values of v restricted on the interior of element T and the bound-
ary of element T respectively. Sincevb may not necessarily be related to the trace of v0 on
¶T, we write v= f v0,vbg. For a given T 2Th, we de�ne another vector space

RTm(T)= Pm(T)d+ P̃m(T)x,

where P̃m(T) is the set of homogeneous polynomials of degree m and x = ( x1,��� ,xd)
(see [7]). We will �nd a locally de�ned discrete weak gradient f rom this space on each
element T.

The main idea of the weak Galerkin method is to introduce weak derivatives for dis-
continuous functions and to use them in discretizing the cor responding variational forms
such as (1.2). The differential operator used in (1.2) is a gradient. A weak gradient has
been de�ned in [33]. Now we de�ne approximations of the weak gra dient as follows. For
eachv= f v0,vbg2 Vh, we de�ne a discrete weak gradient r wv2 RTm(T) on each element
T such that

(r wv,t )T = � (v0,r� t )T + hvb,t �n i ¶T, 8t 2 RTm(T), (2.2)

where r wv is locally de�ned on each element T, (v,w)T =
R

T vwdx and hv,wi ¶T =
R

¶T vwds.
We will use (r wv, r ww) to denote å T2Th

(r wv,r ww)T. Then the WG method for the
Helmholtz equation (1.1a)-(1.1b) can be stated as follows.

Algorithm 2.1 (Weak Galerkin Algorithm) . A numerical approximation for (1.1a) and
(1.1b) can be obtained by seekinguh = f u0,ubg2 Vh, such that for all vh = f v0,vbg2 Vh,

(dr wuh,r wvh) � k2(u0,v0)+ ikhub,vbi ¶W=( f ,v0)+ hg,vbi ¶W. (2.3)

Denote by Qhu = f Q0u,Qbug the L2 projection onto Pm(T) � Pm(e), e2 ¶T. In other
words, on each element T, the function Q0u is de�ned as the L2 projection of u in Pm(T)
and Qbu is the L2 projection of u in Pm(¶T).

For Eq. (1.1a) with Dirichlet boundary condition u= g on ¶W, optimal error estimates
have been obtained in [33].

For a suf�ciently small mesh size h, we can derive following optimal error estimate
for the Helmholtz equation (1.1a) with the mixed boundary co ndition (1.1b).

Theorem 2.1. Let uh 2 Vh and u2 Hm+ 2(W) be the solutions of(2.3) and(1.1a)-(1.1b) respec-
tively and assume thatW is convex. Then for k� 0, there exists a constant C such that

kr w(uh� Qhu)k � Chm+ 1(kukm+ 2+ k f km), (2.4a)

kuh� Qhuk � Chm+ 2(kukm+ 2+ k f km). (2.4b)
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Proof. The proof of this theorem is similar to that of Theorem 8.3 and Theorem 8.4 in [33]
and is very long. Since the emphasis of this paper is to invest igate the performance of the
WG method, we will omit details of the proof.

3 Implementation of WG method

First, de�ne a bilinear form a(�,�) as

a(uh,vh)= ( dr wuh,r wvh) � k2(u0,v0)+ ikhub,vbi ¶W.

Then (2.3) can be rewritten with vh = f v0,vbg

a(uh,vh)= ( f ,v0)+ hg,vbi ¶W. (3.1)

The methodology of implementing the WG methods is the same as that for continu-
ous Galerkin �nite element methods except that the standard g radient operator r should
be replaced by the discrete weak gradient operator r w.

In the following, we will use the lowest order weak Galerkin e lement (m=0) on trian-
gles as an example to demonstrate how one might implement the weak Galerkin �nite
element method for solving the Helmholtz problem (1.1a) and (1.1b). LetN(T) and N(e)
denote, respectively, the number of triangles and the numbe r of edges associated with a
triangulation Th. Let Eh denote the union of the boundaries of the triangles T of Th.

The procedure of implementing the WG method (2.3) consists o f the following three
steps:

1. Find basis functions for Vh de�ned in (2.1):

Vh = spanf f 1,��� ,f N (T),y 1,��� ,y N (e)g= spanf F 1,��� ,F ng,

where n= N(T)+ N(e) and

f i =
�

1 on Ti ,
0 otherwise,

y j =
�

1 on ej ,
0 otherwise,

for Ti 2Th and ej 2Eh. Please note thatf i and y j are de�ned on whole W.

2. Substituting uh = å n
j= 1ajF j into (3.1) and letting v= F i in (3.1) yield

n

å
j= 1

a(F j ,F i)aj =( f ,F 0
i )+ hg,F b

i i ¶W, i = 1,��� n, (3.2)

where F 0
i and F b

i are the values of F i on the interior of the triangle and the
boundary of the triangle respectively. In our computations , the integrations on
the right-hand side of (3.2) are conducted numerically. In p articular, a 7-points
two-dimensional Gaussian quadrature and a 3-points one-di mensional Gaussian
quadrature are employed, respectively, to calculate ( f ,F 0

i ) and hg,F b
i i ¶W numeri-

cally.
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3. Form the coef�cient matrix (a(F j ,F i )) i,j of the linear system (3.2) by computing

a(F j ,F i )= ( dr wF j ,r wF i ) � k2(F 0
j ,F

0
i )+ ikhF b

j ,F
b
i i ¶W. (3.3)

All integrations in (3.3) are carried out analytically.

Finally, we will explain how to compute the weak gradient r w for a given function
v2 Vh when m= 0. For a given T 2Th, we will �nd r wv2 RT0(T),

RT0(T)=
�

a+ cx
b+ cy

�
= spanf q1,q1,q3g.

For example, we can chooseqi as follows

q1 =
�

1
0

�
, q2 =

�
0
1

�
, q3 =

�
x
y

�
.

Thus on each elementT 2Th, r wv= å 3
j= 1cjqj . Using the discrete weak gradient (2.2), we

�nd cj by solving the following linear system:

0

@
(q1,q1)T (q2,q1)T (q3,q1)T

(q1,q2)T (q2,q2)T (q3,q2)T

(q1,q3)T (q2,q3)T (q3,q3)T

1

A

0

@
c1

c2

c3

1

A =

0

@
� (v0,r� q1)T + hvb,q1�n i ¶T
� (v0,r� q2)T + hvb,q2�n i ¶T
� (v0,r� q3)T + hvb,q3�n i ¶T

1

A .

The inverse of the above coef�cient matrix can be obtained exp licitly or numerically
through a local matrix solver. For the basis function F i , r wF i is nonzero on only one
or two triangles.

4 Numerical experiments

In this section, we examine the WG method by testing its accur acy, convergence, and
robustness for solving two dimensional Helmholtz equation s. The pollution effect due
to large wave numbers will be particularly investigated and tested numerically. For con-
vergence tests, both piecewise constant and piecewise linear �nite elements will be con-
sidered. To demonstrate the robustness of the WG method, the Helmholtz equation in
both homogeneous and inhomogeneous media will be solved on c onvex and non-convex
computational domains. The mesh generation and all computa tions are conducted in the
MATLAB environment. For simplicity, a structured triangula r mesh is employed in all
cases, even though the WG method is known to be very �exible in dealing with various
different �nite element partitions [28,29].

Two types of relative errors are measured in our numerical ex periments. The �rst one
is the relative L2 error de�ned by

kuh � Qhuk
kQhuk

.
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The second one is the relative H1 error de�ned in terms of the discrete gradient

kr w(uh� Qhu)k
kr wQhuk

.

Numerically, the H1-semi-norm will be calculated as

jjj uh� Qhujjj 2= h� 1hu0� ub� (Q0u � Qbu),u0� ub� (Q0u � Qbu)i ¶W

for the lowest order �nite element (i.e., piecewise constant s). For piecewise linear el-
ements, we use the original de�nition of r w to compute the H1-semi-norm kr w(uh�
Qhu)k.

4.1 A convex Helmholtz problem

We �rst consider a homogeneous Helmholtz equation de�ned on a c onvex hexagon do-
main, which has been studied in [18]. The domain W is the unit regular hexagon domain
centered at the origin (0,0), see Fig. 1(a). Here we setd= 1 and f = sin(kr)/ r in (1.1a),
where r =

p
x2+ y2. The boundary data g in the Robin boundary condition (1.1b) is cho-

sen so that the exact solution is given by

u=
cos(kr)

k
�

cosk+ i sink
k(J0(k)+ iJ1(k))

J0(kr), (4.1)

where Jx(z) are Bessel functions of the �rst kind. Let Th denote the regular triangulation
that consists of 6N2 triangles of size h= 1/ N, as shown in Fig. 1(a) for T1

8
.

Table 1 illustrates the performance of the WG method with pie cewise constant ele-
ments for the Helmholtz equation with wave number k= 1. Uniform triangular partitions
were used in the computation through successive mesh re�neme nts. The relative errors
in L2 norm and H1 semi-norm can be seen in Table 1. The table also includes numeri-
cal estimates for the rate of convergence in each metric. It can be seen that the order of
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-1 -0.5 0 0.5 1
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(a) (b)

Figure 1: Geometry of testing domains and sample meshes. (a)a convex hexagon domain; (b) a non-convex
imperfect circular domain.
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Table 1: Convergence of piecewise constant WG for the Helmholtz equation on a convex domain with wave
number k= 1.

h
relative H1 relative L2

error order error order
5.00e-01 2.49e-02 4.17e-03
2.50e-01 1.11e-02 1.16 1.05e-03 1.99
1.25e-01 5.38e-03 1.05 2.63e-04 2.00
6.25e-02 2.67e-03 1.01 6.58e-05 2.00
3.13e-02 1.33e-03 1.00 1.64e-05 2.00
1.56e-02 6.65e-04 1.00 4.11e-06 2.00

Table 2: Convergence of piecewise linear WG for the Helmholtz equation on a convex domain with wave number
k= 5.

h
relative H1 relative L2

error order error order
2.50e-01 9.48e-03 2.58e-04
1.25e-01 2.31e-03 2.04 3.46e-05 2.90
6.25e-02 5.74e-04 2.01 4.47e-06 2.95
3.13e-02 1.43e-04 2.00 5.64e-07 2.99
1.56e-02 3.58e-05 2.00 7.06e-08 3.00
7.81e-03 8.96e-06 2.00 8.79e-09 3.01

convergence in the relative H1 semi-norm and relative L2 norm are, respectively, one and
two for piecewise constant elements.

High order of convergence can be achieved by using corresponding high order �nite
elements in the present WG framework. To demonstrate this ph enomena, we consider
the same Helmholtz problem with a slightly larger wave numbe r k = 5. The WG with
piecewise linear functions was employed in the numerical ap proximation. The compu-
tational results are reported in Table 2. It is clear that the numerical experiment validates
the theoretical estimates. More precisely, the rates of convergence in the relative H1 semi-
norm and relative L2 norm are given by two and three, respectively.

4.2 A non-convex Helmholtz problem

We next explore the use of the WG method for solving a Helmholt z problem de�ned on a
non-convex domain, see Fig. 1(b). The medium is still assumed to be homogeneous, i.e.,
d= 1 in (1.1a). We are particularly interested in the performan ce of the WG method for
dealing with the possible �eld singularity at the origin. For simplicity, only the piecewise
constant RT0 elements are tested for the present problem. Following [20] , we take f = 0 in
(1.1a) and the boundary condition is simply taken as a Dirich let one: u= g on ¶W. Here g
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is prescribed according to the exact solution [20]

u= Jx

�
k
q

x2+ y2
�

cos(xarctan(y/ x)) . (4.2)

In the present study, the wave number was chosen as k= 4 and three values for the
parameter x are considered; i.e., x = 1, x = 3/2 and x = 2/3. The same triangular mesh
is used in the WG method for all three cases. In particular, an initial mesh is �rst gen-
erated by using MATLAB with default settings, see Fig. 1(b). N ext, the mesh is re�ned
uniformly for �ve times. The WG solutions on mesh level 1 and me sh level 6 are shown
in Fig. 2, Fig. 3 and Fig. 4, respectively, for x= 1, x= 3/2, and x= 2/3. Since the numerical
errors are quite small for the WG approximation correspondi ng to mesh level 6, the �eld
modes generated by the densest mesh are visually indistingu ishable from the analytical
ones. In other words, the results shown in the right charts of Fig. 2, Fig. 3, and Fig. 4
can be regarded as analytical results. It can be seen that in all three cases, the WG solu-
tions already agree with the analytical ones at the coarsest level. Moreover, based on the
coarsest mesh, the constant function values can be clearly seen in each triangle, due to
the use of piecewise constantRT0 elements. Nevertheless, after the initial mesh is re�ned
for �ve times, the numerical plots shown in the right charts ar e very smooth. A perfect
symmetry with respect to the x-axis is clearly seen.

We next investigate the numerical convergence rates for WG. The numerical errors of
the WG solutions for x= 1, x= 3/2 and x= 2/3 are listed, respectively, in Table 3, Table 4,

Table 3: Numerical convergence test for the non-convex Helmholtz problem with k= 4 and x= 1.

h
relative H1 relative L2

error order error order
2.44e-01 5.64e-02 1.37e-02
1.22e-01 2.83e-02 1.00 3.56e-03 1.95
6.10e-02 1.42e-02 0.99 8.98e-04 1.99
3.05e-02 7.14e-03 1.00 2.25e-04 2.00
1.53e-02 3.57e-03 1.00 5.63e-05 2.00
7.63e-03 1.79e-03 1.00 1.41e-05 2.00

Table 4: Numerical convergence test for the non-convex Helmholtz problem with k= 4 and x= 3/2 .

h
relative H1 relative L2

error order error order
2.44e-01 5.56e-02 1.12e-2
1.22e-01 2.81e-02 0.98 3.02e-03 1.89
6.10e-02 1.42e-02 0.99 8.06e-04 1.91
3.05e-02 7.14e-03 0.99 2.12e-04 1.92
1.53e-02 3.58e-03 1.00 5.54e-05 1.94
7.63e-03 1.79e-03 1.00 1.44e-05 1.95



1470 L. Mu, J. Wang, X. Ye and S. Zhao / Commun. Comput. Phys., 15 (2014), pp. 1461-1479

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1  

 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(a) (b)

Figure 2: WG solutions for the non-convex Helmholtz problemwith k= 4 and x= 1. (a) Mesh level1; (b) Mesh
level 6.
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Figure 3: WG solutions for the non-convex Helmholtz problemwith k= 4 and x = 3/2 . (a) Mesh level1; (b)
Mesh level6.
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Figure 4: WG solutions for the non-convex Helmholtz problemwith k= 4 and x = 2/3 . (a) Mesh level1; (b)
Mesh level6.

and Table 5. It can be seen that forx= 1 and x= 3/2, the numerical convergence rates in
the relative H1 and L2 errors remain to be �rst and second order, while the convergen ce
orders degrade for the non-smooth case x = 2/3. Mathematically, for both x = 3/2 and
x= 2/3, the exact solutions (4.2) are known to be non-smooth across the negativex-axis if
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Table 5: Numerical convergence test for the non-convex Helmholtz problem with k= 4 and x= 2/3 .

h
relative H1 relative L2

error order error order
2.44e-01 1.07e-01 5.24e-02
1.22e-01 5.74e-02 0.90 2.18e-02 1.27
6.10e-02 3.23e-02 0.83 9.01e-03 1.27
3.05e-02 1.89e-02 0.77 3.68e-03 1.29
1.53e-02 1.14e-02 0.73 1.49e-03 1.31
7.63e-03 6.99e-03 0.71 5.96e-04 1.32

the domain was chosen to be the entire circle. However, the pr esent domain excludes the
negative x-axis. Thus, the source term f of the Helmholtz equation (1.1a) can be simply
de�ned as zero throughout W. Nevertheless, there still exists some singularities at the
origin (0,0). In particular, it is remarked in [20] that the singularity l ies in the derivatives
of the exact solution at (0,0). Due to such singularities, the convergence rates of high
order discontinuous Galerkin methods are also reduced for x = 3/2 and x = 2/3 [20]. In
the present study, we further note that there exists a subtle difference between two cases
x = 3/2 and x = 2/3 at the origin. To see this, we neglect the second cos(�) term in the
exact solution (4.2) and plot the Bessel function of the �rst k ind Jx(kjr j) along the radial
direction r, see Fig. 5. It is observed that the Bessel function of the �rst kind is non-
smooth for the case x= 2/3, while it looks smooth across the origin for the case x= 3/2.
Thus, it seems that the �rst derivative of J3/2 (kjr j) is still continuous along the radial
direction. This perhaps explains why the present WG method d oes not experience any
order reduction for the case x = 3/2. In [20], locally re�ned meshes were employed to
resolve the singularity at the origin so that the convergenc e rate for the casex= 2/3 can
be improved. We note that local re�nements can also be adopted in the WG method for
a better convergence rate. A study of WG with grid local re�nem ent is left to interested
parties for future research.

-0.1 -0.05 0 0.05 0.1

0

0.1

0.2

0.3

0.4

r

J x(k
 |r

|)

 

 

x=3/2
x=2/3

Figure 5: The Bessel function of the �rst kindJx(kjr j ) across the origin.
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4.3 A Helmholtz problem with inhomogeneous media

We consider a Helmholtz problem with inhomogeneous media de �ned on a circular do-
main with radius R. Note that the spatial function d(x,y) in the Helmholtz equation
(1.1a) represents the dielectric properties of the underly ing media. In particular, we have
d= 1/ e in the electromagnetic applications [35], where e is the electric permittivity. In the
present study, we construct a smooth varying dielectric pro �le:

d(r)=
1
e1

S(r)+
1
e2

(1� S(r)) , (4.3)

where r =
p

x2+ y2, e1 and e2 are dielectric constants, and

S(r)=

8
>><

>>:

1, if r < a,

� 2
� b� r

b� a

� 3
+ 3

� b� r
b� a

� 2
, if a� r � b,

0, if r > b,

(4.4)

with a< b< R. An example plot of d(r) and S(r) is shown in Fig. 6. In classical electro-
magnetic simulations, e is usually taken as a piecewise constant, so that some sophisti-
cated numerical treatments have to be conducted near the material interfaces to secure
the overall accuracy [35]. Such a procedure can be bypassed if one considers a smeared
dielectric pro�le, such as (4.3). We note that under the limit b! a, a piecewise constant
pro�le is recovered in (4.3). In general, the smeared pro�le (4 .3) might be generated via
numerical �ltering, such as the so-called e-smoothing technique [30] in computational
electromagnetics. On the other hand, we note that the dielectric pro�le might be de�ned
to be smooth in certain applications. For example, in studyi ng the solute-solvent interac-
tions of electrostatic analysis, some mathematical models [11, 36] have been proposed to
treat the boundary between the protein and its surrounding a queous environment to be
a smoothly varying one. In fact, the de�nition of (4.3) is insp ired by a similar model in
that �eld [11].

In the present study, we choose the source of the Helmholtz equation (1.1a) to be

f (r)= k2[d(r) � 1]J0(kr)+ kd0(r)J1(kr), (4.5)

where

d0(r)=
� 1

e1
�

1
e2

�
S0(r) (4.6)

and

S0(r)=

8
>><

>>:

0, if r < a,

6
� b� r

b� a

� 2
� 6

� b� r
b� a

�
, if a� r � b,

0, if b< r.

(4.7)
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Figure 6: An example plot of smooth dielectric pro�led(r) and S(r) with a= 1, b= 3 and R= 5. The dielectric
coe�cients of protein and water are used, i.e.,e1 = 2 and e2 = 80.

For simplicity, a Dirichlet boundary condition is imposed a t r = R with u = g. Here g is
prescribed according to the exact solution

u= J0(kr). (4.8)

Our numerical investigation assumes the value of a= 1, b= 3 and R= 5. The wave
number is set to be k = 2. The dielectric coef�cients are chosen as e1 = 2 and e2 = 80,
which represent the dielectric constant of protein and wate r [11, 36], respectively. The
WG method with piecewise constant �nite element functions is employed to solve the
present problem with inhomogeneous media in Cartesian coor dinate. Table 6 illustrates
the computational errors and some numerical rate of converg ence. It can be seen that
the numerical convergence in the relative L2 error is not uniform, while the relative H1

error still converges uniformly in �rst order. This phenomen a might be related to the
non-uniformity and smallness of the media in part of the comp utational domain. In
particular, we note that the relative L2 error for the coarsest grid is extremely large, such
that the numerical order for the �rst mesh re�nement is unusual ly high. To be fair, we
thus exclude this data in our analysis. To have an idea about t he overall numerical order
of this non-uniform convergence, we calculated the average convergence rate and least-
square �tted convergence rate for the rest mesh re�nements, wh ich are 1.97 and 1.88,

Table 6: Numerical convergence test of the Helmholtz equation with inhomogeneous media.

h
relative H1 relative L2

error order error order
1.51e-00 2.20e-01 1.04e-00
7.54e-01 1.24e-01 0.83 1.20e-01 3.11
3.77e-01 6.24e-02 0.99 1.81e-02 2.73
1.88e-01 3.13e-02 1.00 5.71e-03 1.67
9.42e-02 1.56e-02 1.00 2.14e-03 1.42
4.71e-02 7.82e-03 1.00 5.11e-04 2.06
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respectively. Thus, the present inhomogeneous example demonstrates the accuracy and
robustness of the WG method for the Helmholtz equation.

4.4 Large wave numbers

We �nally investigate the performance of the WG method for the Helmholtz equation
with large wave numbers. As discussed above, without resort ing to high order gen-
eralizations or analytical/special treatments, we will ex amine the use of the plain WG
method for tackling the pollution effect. The homogeneous H elmholtz problem of Sub-
section 4.1 will be studied again. Also, the RT0 and RT1 elements are used to solve the ho-
mogeneous Helmholtz equation with the Robin boundary condi tion. Since this problem
is de�ned on a structured hexagon domain, a uniform triangula r mesh with a constant
mesh size h throughout the domain is used. This enables us to precisely evaluate the
impact of the mesh re�nements. Following the literature work s [6,18], we will focus only
on the relative H1 semi-norm in the present study.

To study the non-robustness behavior with respect to the wav e number k, i.e., the
pollution effect, we solve the corresponding Helmholtz equ ation by using piecewise con-
stant WG method with various mesh sizes for four wave numbers k= 5, k= 10,k= 50, and
k= 100, see Fig. 7(a) for the WG performance. From Fig. 7(a), it can be seen that whenh
is smaller, the WG method immediately begins to converge for the casesk= 5 and k= 10.
However, for large wave numbers k = 50 and k = 100, the relative error remains to be
about 100%, until h becomes to be quite small or 1/ h is large. This indicates the presence
of the pollution effect which is inevitable in any �nite eleme nt method [5]. In the same
�gure, we also show the errors of different k values by �xing kh= 0.25. Surprisingly, we
found that the relative H1 error does not evidently increase as k becomes larger. The con-
vergence line for kh= 0.25 looks almost �at, with a very little slope. In other word s, the
pollution error is very small in the present WG result. We not e that such a result is as
good as the one reported in [18] by using a penalized disconti nuous Galerkin approach
with optimized parameter values. In contrast, no parameter s are involved in the WG
scheme.

On the other hand, the good performance of the WG method for th e casekh= 0.25 does
not mean that the WG method could be free of pollution effect. In fact, it is known theo-
retically [5] that the pollution error cannot be eliminated completely in two- and higher-
dimensional spaces for Galerkin �nite element methods. In th e right chart of Fig. 7, we
examine the numerical errors by increasing k, under the constraint that kh is a constant.
Huge wave numbers, up to k = 240, are tested. It can be seen that when the constant
changes from 0.5 to 0.75 and 1.0, the non-robustness behavior against k becomes more
and more evident. However, the slopes of kh=constant lines remain to be small and the
increment pattern with respect to k is always monotonic. This suggests that the pollution
error is well controlled in the WG solution.

In the rest of the paper, we shall present some numerical results for the WG method
when applied to a challenging case of high wave numbers. In Fi gs. 8 and 10, the WG nu-
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Figure 7: RelativeH1 error of the WG solution. (a) with respect to1/ h; (b) with respect to wave numberk.

(a) (b)

Figure 8: Exact solution (a) and piecewise constant WG approximation (b) for k= 100, and h= 1/60.
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Figure 9: The trace plot alongx-axis or y= 0 from WG solution using piecewise constants.

merical solutions are plotted against the exact solution of the Helmholtz problem. Here
we take a wave number k= 100 and mesh sizeh= 1/60 which is relatively a coarse mesh.
With such a coarse mesh, the WG method can still capture the fast oscillation of the solu-
tion. However, the numerically predicted magnitude of the o scillation is slightly damped
for waves away from the center when piecewise constant elements are employed in the
WG method. Such damping can be seen in a trace plot along x-axis or y = 0. To see this,
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(a) (b)

Figure 10: Exact solution (a) and piecewise linear WG approximation (b) for k= 100, and h= 1/60.

-1 -0.5 0 0.5 1
-0.1

-0.05

0

0.05

0.1
k=100, h=1/60

 

 

Numerical solution
Exact Solution

Figure 11: The trace plot alongx-axis or y= 0 from WG solution using piecewise linear elements.

we consider an even worse case with k= 100 andh= 1/50. The result is shown in the �rst
chart of Fig. 9. We note that the numerical solution is excell ent around the center of the re-
gion, but it gets worse as one moves closer to the boundary. If we choose a smaller mesh
size h= 1/120, the visual difference between the exact and WG soluti ons becomes very
small, as illustrate in Fig. 9. If we further choose a mesh size h= 1/200, the exact solution
and the WG approximation look very close to each other. This i ndicates an excellent con-
vergence of the WG method when the mesh is re�ned. In addition t o mesh re�nement,
one may also obtain a fast convergence by using high order elements in the WG method.
Fig. 11 illustrates a trace plot for the case of k= 100 and h= 1/60 when piecewise linear
elements are employed in the WG method. It can be seen that the computational result
with this relatively coarse mesh captures both the fast osci llation and the magnitude of
the exact solution very well.

5 Concluding remarks

The present numerical experiments indicate that the WG meth od as introduced in [33]
is a very promising numerical technique for solving the Helm holtz equations with large
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wave numbers. This �nite element method is robust, ef�cient, a nd easy to implement.
On the other hand, a theoretical investigation for the WG met hod should be conducted
by taking into account some useful features of the Helmholtz equation when special test
functions are used. It would also be valuable to test the perf ormance of the WG method
when high order �nite elements are employed to the Helmholtz e quations with large
wave numbers in two and three dimensional spaces.

Finally, it is appropriate to clarify some differences and c onnections between the WG
method and other discontinuous �nite element methods for sol ving the Helmholtz equa-
tion. Discontinuous functions are used to approximate the H elmholtz equation in many
other �nite element methods such as discontinuous Galerkin ( DG) methods [3,12,18] and
hybrid discontinuous Galerkin (HDG) methods [14,15,20].

However, the WG method and the HDG method are fundamentally d ifferent in con-
cept and formulation. The HDG method is formulated by using t he standard mixed
method approach for the usual system of �rst order equations, while the key to the WG
is the use of the discrete weak differential operators. For a second order elliptic prob-
lem, these two methods share the same feature by approximating �rst order derivatives
or �uxes through a formula that was commonly employed in the m ixed �nite element
method. For high order partial differential equations (PDE s), the WG method is greatly
different from the HDG. Consider the biharmonic equation [2 9] as an example. The �rst
step of the HDG formulation is to rewrite the fourth order equ ation to four �rst order
equations. In contrast, the WG formulation for the biharmon ic equation can be derived
directly from the variational form of the biharmonic equati on by replacing the Laplacian
operator D by a weak Laplacian Dw and adding a parameter free stabilizer [29]. It should
be emphasized that the concept of weak derivatives makes the WG a widely applicable
numerical technique for a large variety of PDEs which we shal l report in forthcoming
papers.

For the Helmholtz equation studied in this paper, the WG meth od and the HDG
method yield the same variational form for the homogeneous H elmholtz equation with a
constant d in (1.1a). However, the WG discretization differs from the H DG discretization
for an inhomogeneous media problem with d being a spatial function of x and y. More-
over, the WG method has an advantage over the HDG method when t he coef�cient d is
degenerated.
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